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ABSTRACT
FOR
FINAL REPORT
FOR A
DESIGN STUDY FOR
AN OPTIMAL NON~LINEAR RECEIVER/DEMODULATOR

This report presents the results of investigation on the
optimal performance of the PM demodulator using Bucy's
statistical non-linear filtering theory. A cyclic phase
non-linear filtering technique has been developed for
modular phase tracking system uses. A realizable implemen-
tation of the optimal cyclic phase non--linear filter based
on the Fourier series representation of the cyélic density

function has been derived. '

The work described in this report is restricted to the
first-order phase process, for faster computation in digital
simulations and for extensive research results available in
Weiner optimum phase-lock loop for comparison purposes. How-
ever, the technique developed in this program is equally

applicable to higher-order systems as well.

The actual performance of the non-linear filter was investi-
gated using Monte Carlo technigues. The classical phase-
lock locp was also being simulated as a reference for the

non-linear process. The cyclic phase non-linear filter appears
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to be about 0.7 dB better than the phase lock with respect
to noise alone where the maximum conceivable improvement is
2.2 dB, or the excess noise relative to the ideal is about

% less in dB than that of the phase-lock loop.

It wasc not possible due to computing limitations during the
last part of the program to achieve simulation results on

the qﬁestion of signal suppression. However, an experimental
or simulatable technique for measuring signal suppression has
been devised. The total signal-to-noise ratio improvement
relative to the phase-lock loop will ccnsist of the noise

improvement and signal suppression improvement.

The overall results of this study program is highly encourag-
ing. Hardware implementation based on the cyclic phase schene
appears to be feasible. Significant improvement in performance
in second-order loops is anticipated. More work on this line

is strongly recommended.
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TERMINOLOGY

Ref.
Page Sxmbol _
3.1 s{t) = signal, ACos (wot + x(t)) + w{t)
3.1 w(t) = "white" additive measurement noise
3.1 @0 = spectral density, two-sided, of w(t) (Watt-sec)
3.3 r = noise density/signal power ratio
= 2 i_ﬁo/A2 (sec)
3.1 ° x(t) = phase process
3.1 u(t) = white noise derivative of x(t)
x(t) = Ku@) 9
3.2 g = spectral density (two-sided) of Ku, (%))sec
3.13 dU) = u) dt (formally)
3.5 dWw(t) = w()adt (formally)
3.6 71529 = low-pass normalized equivalents of s
2z, = Cos x(t) + Vl(t)
2y = Sin x(t) + v2(t)
3.10 z; = (Zi)n = nth discrete time sample of Zis i=1,2
0 )
= vector observation (z l’ZZ)
3.10 Cc = %— = discrete measurement noise variance on 23
i
= RF (dimensionless)
3.10 B = gA = discrete driving noise variance on u,
= R/F (radz)
3.3 R = &2rq = phase error variance for the optimal estimator
= 4BC  inthe associated linear problem (dimensionless)
3.3 F* = A/—Zé-:- = time constant for the optimal estimator in the

associated linear problem (scconds)

3.10 A = sample interval (seconds)
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J(x, 1)
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M(e)

I

I}

n

1t

i

|t}

i

1

TERMINOLOGY, Cont’d,

observation operator on y

+A

w
= KJ y(t) de

| OLy(na)]

F*/A

time constant for the optimal estimator in

_ /C the discrete associated linear problem
YE

(dimensionless)

conditional probability of x (phase) based on all

,observation through time t

'x-x* = estimate error
5]
5% f(X)
cyclic loss function 2(1 -Cos €)
€+n2n
such that -t < M) <«

modulo 2x operator
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SUPERSCRIPTS AND SUBSCRIPTS

denotes any variable

conditional or a posteriori expectation of

measurements to date, a random variable, function of the

measurements

an estimate of -

ft- dt (formally)
0
so that
de = sdt (formally)
th

i discrete sample of o

time average

pertaining to phase-locked loop estimate

pertaining to cyclic estimate xz = ATN

Cosx

pertaining to static phase estimate (Sec.6)
pertaining to conditional mean estimate

a priori expectation of °

_iv_

based on all

Sinx
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1, STATEMENT OF PROBLEM

Phase-locked loops in a number of variations constitute one of the very
important basic circuit building blocks available to the communication system
designer. Commonly PLL's are used in preference to passive band-pass
filters in cases where some special narrow banding or sensitivity require~

ment precludes the latter.

The sensitivity limit of the oxdinary phase-locked loop is reached where the
signal drops to a level such that the output phase jitter is somewhere in the
order of 1/2 radian, Beyond this paint the phase-locked loop is quite likely

to lose lock and the phase jitter increases very rapidly.

Since even a very few db extension of this threshold may be of considerable
economic value in applications where sensitivity is critical, the subject of

threshold and threshold extension has received considerable theoretical and
developmental emphasis, Van Trees (7), Develet (8,9), Cahn (10), Spilker (12),
among others have given first-order approximate analysis of the threshold
phenomenon, Viterbi (5) has introduced the Fokker-Plank analysis which

provides an exact threshold solution in certain cases. Charles and Lindscy {Ref.12)
have published experimental data generally confirming Viterbi's Fokker-

Plank analysis. Various modifications of the basic phase-locked circuit

including FM feedback (16), Tanlock (13,15), bank division (14), and sub-

“harmonic operation {(17) have been studied as means of extending the threshold

of the basic PLL prototype to some extent in special cases.

The present study was motivated by recent developments (1,2} in the theory
and practical realization of optimum non-linear filters or estimators, capable
in principle of achieving the Bayesian optimal estimate of a variable (here
phase, 8) given some noisy observations of a non-linear functional (here

Sin 8, Cos @ of the variable plus a dynamical model of the statistics of the
variable (i.e., a state model of the phase). This theory is the natural

extension of the linear Kalman-Bucy theory into the domain of non-linear

- 1.1 -
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functional observations and as such includes the latter as well as the Weinex

theory as special cases.

© This approach leads at the outset to the abandonment of the basic PLL prototype.

Rather, the form of the optimum phase estimator is developed as an outcome
of the theory and the prototype is seen to be quite different in general. In the
special case where the signal-to-noise ratio is very high, i.e., well above
the threshold of the corresponding PLL, the optimal non-linear filter is shown
to approach the phase-locked filter asymptotically in form as well as perfor-
mance, an intuitively satisfying result. In general, however, for low
signal/noise ratio the form of the optimal filter differs from the PLL in a
form that would have becn quite difficult to derive intuitively; this is probably

the major contribution of the present development,

The overall framework of the present study may be illustrated as a block
diagram as in Figure 1-1, The signal is modelled as an integrated white
noise or Brownian motion phase modulating a carrier frequency signal Cos wot.
This type of signal could arise,for example, from frequency modulation by a
signal having an essentially white or flat spectrum, or alternatively, by
dopplex effect due to transmitter motion with the target velocity (doppler

frequency) having an essentially flat speetrum .

The choice to restrict the present exploratory study to the first-order phase
pro'cess (Brownian motion phase) was dictated by several factors including the
fact
1) the Weiner optimum phase-lock loop which is to be used as a point
of performance reference is of first-order and much more extensive
analyses arc available than for higher order loops
2) the optimuwm non-linear filter is one-dimensional and this makes it
much easier to simulate digitally (i.e. ,faster computation).
However, the basic technique is equally applicable to higher-order problems
and loops and with the expectation that any improvement differential will be
even more apparent in the higher-order loops where the consequences of

loss of lock are more serious.
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Continuing with reference to Figure 1-1. The true signal A Cos(wot + 8(t))

is corrputed by additive white noise. This noisy phase modulated signal then
constitutes the available obsexrvation and the problem is to compare various
means of extracting an estimate, 8%*(t), of the phase or information. As a
reference for this process we take the classical phase~locked loop. The

second estimator is the Linearized Kalman-Bucy Filter, and finally the optimum
Non-Linear filter. Since in the simulation we have available the true phase

8(t) we can find the error of each estimate and finally extract the various

erroxr statistics.

-

For thé phase-locked loop and linearized KB filter good appafoximdte expressions
are ava-ilable‘against which to compare the experimental statistics. For the
non-linear filter this is not the case, in general, and experimental or Monte Carlo
techniques of this type are the only presently known way of studying its actual

performance.

It should be recognized at the outset that there are two basically different
types of utilization of the phase-locked loop and correspondingly two different
types of criteria against which they may be optimized and evaluated. To dis-

tinguish these two types we define the terminology

Continuous Phase Tracking " to denote problems such as Doppler tracking
“where an accurate cumulative count of elapsed cycles is significant

and cycle slips induce a lasting error

Modular Phase Tracking to denote problems such as phase demodulation
where only the phase error modulo 2r is of significance and cycle
slips are of importance only in their transient effect on this modular

error,

In the present study we have addressed particularly the latter problem, i.e.,
Modular Phase Tracking and our approach has been optimized and evaluated
relative to such a criterion. Some incidental results on cycle slippage fall
out but it should be emphasized that more efficient approaches may well exist

where coutinuous phase tracking is a prime objective,

- 1.4 -



The next few chapters will expand the details of the discrete {sampled)
time representation of the signal processes and optimization of the various

estimators for the problem at hand.
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2. BASIC ORIENTATION TO THE OPTIMAL
NON-LINEAR PHASE ESTIMATOR

Our purpose in this section is to describe the theoretic results in a general
way to try and paint the "big picture” and in general we leave the details to

the references or the later chapters in the text,

First of all, we should discuss the notion of an optimal estimate, for example,
of phase, based on some observations. In general, noise effects will mean
that we can seldom if ever hope to estimate the phase perfectly. The most

we can ask is that the average error of estimate be minimized in some sense;
and this sense needs careful definition. The mean-square error criterion,

i.e., (62), is but one of any number of possible "loss functions”, L(g).

We shall find in the present context of a phase estimator that the error
criterion L(e) = (1 ~-Cose) has attractive properties in that it is equivaleut
to 62 when € is small but has the appropriate periodicity when ¢ islarge.

Having defined a loss function the estimation problem reduces to choosing that
estimate of the variable which minimizes the expected value of the loss
function, given the observations. This may be derived directly from the

conditional probability density function of the variable given the measurements,i.e.,

p(X ‘ Zl’ Zz: "')

which summarizes the spread of uncertainty as to the true value of x given

all the measurements z to date, If this conditional density is available

[EREE
the problem of choosing an "optimal"” estimate relative to the loss function
L(e) reduces simply to choosing an estimate x* such as to minimize the

expected loss in the light of the observations

N
L{x*) = 'J"L(x* - %) p(x‘zl, Zy) o) dx 2.1)

or x* is the solution of

0 = IL'(X* - X) p(xlzl, Zys ceeydx 2,2)

provided that
~
=0

xX

- 2.1 -



pT—

| —

The estimation is thus straightforward once we are given the conditional
density function p(x‘zl, .+.). Finding this conditional density function
thus constitutes the heart of the estimation problem. Oux approach is
based on sequential application of Bayes Lemma and results in a recursive

scheme whereby the old density
P(Xi‘ Zi.12%4-92" " zl)

and a new measurement

Z .
1

are combined to give the updated density
P(Xi+1‘zi: Zge12 =0 %)

This sequential Bayes rule is developed in simple form in Appendix 1 and
the consequences of its application to the present problem are briefly

previewed in the following paragraphs,

We will be concerned with the problem of a phasc process given by

- . _ t
Model Xn+1 = xn-i«un. or dx = du

where u ~ and dli are discrete and continuous Gaussian band-
limited white noise processes with variance B = gA and two-sided
_ spectral density q respectively. Of course, A is the discrete

time step, and we will assume that A is small enough so that

t We use the nomenclature

. t . t+dt
i = Ju@)ay dif = [ () dy
o t

where u(t) 1is baud-liinited White‘ noise,
g (t) is then similar, at least in its important low -frequency characteristics,
to Brownian motion, for which equations of this type (2.3) have a complete
theory. In the sequel we will approximate the i process as Brownian motion
in order to bring this theoxy to bear and equations of the form of 2.3) may be

interpreted as stochastic differential equations. See section 3.2.

- 2,2 -

2.3)



S

Y v

cither equation describes essentially the same phenomenon.
Our interest will be centered on finding estimators Xn or

x*(t) which are functions of the obscrvations.

We take our observation to be of the form, in the continuous

domain
z(t) = ACos (wot + x{t)) + w(t)
~where w(t) is white noise of two=-sided spectral
density §0.

: A and w, are assumed known so that by normalizing to
unit amplitude and heterodyning down to baseband via in-
phase and quadrature detcctors we have, without any loss in
generality, the effective standardized observations with which

we will deal henceforth.

Discrete Time Form © Continuous Time Form

Observations z = Cosx +v, T dZ. = Cosxdt+d¥
—r e 1n n ln 1 1
z, = Sinx_+ d%, = Sinxdt+d¥,
o = Sinx 4+ v, z, = Sinx 2
L n
where v = w/A
dvi i=1,2 are independent white noises of two-
gided spectral density:
2 : . .
2y = 20 _ no_lse de_anmity (two-sided)
A2/2 signal power
\f i=1,2 are independent Gaussian sequences of
. variance:
_ 2T
Ry

The phase estimation problem consists in finding an estimatoxr Xiqq» OF x*(t)

for the phase process as a function Zyoeee 2y OT sample functions zi(t).
n o
The phase-locked loop is of such form, namely:

. th . . .
+ 7 denotes (z,) , i.e., then ™ discrete time point of z

n

I

2.4)
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dx* = -ﬁ-_g;(Cosx dz2 Sinx dzl) : 2.5)
~—
= -Fl—rg (Sin (x-x*) dt + Cos x* d'{;2 - Sin x* cﬁl)
or in discrete form
A .
o — * ———e & - * .
Xl = Xn+F* (Cosxnz2n Smxnzln) 2.6)
= x* +4A (Sinx = x*) + Cosx¥v, =Sinx*v
n " F¥ n n n 2 n l11
(-Fé-« is small, see Section 3)
where F* = ./ -2515 . The gain F* in this case is determined by
approximating Sin(x-x*) by =x-x* and choosing F* to
minimize the mean-square error in the Wiener sense which
can be seen tobe R = /2qr ' = JBC' (see Section 4).
The actual error performance of the phase-lock loop can be determined as
Viterbi has done by finding the distribution of ¢ = x-x* using the Fokker-
"’ Plank equation. The result is that the error probability density function,
p(c,t) is given as the solution to
2 1)
op(e,t Q , 1 4. o)
- 2.0 5% (f Sin@p) + a0
which has the steady state solution, for the error modulo 2x;
eCL Cose 1
ple) = —-—MO a with a = R 2.7)
(=linearized loop S/N)
where 10 is the 0th order Bessel function of imaginary arsument. As
one might expect when R is small the classical phase-lock loop performs
in an optimal fashion, and for all values R the variance of p{e) predicts
well the error performance of the phase-lock loop.
(1) Viterbi analizes a plant noise free case, but the same analysis is valid )
for our moxre general situation, see Section 5.
R



The purposec of the present study is to design a phase estimatoxr with optimal
performance for all values of R. Using the theory of non-linear filtering
the optimal filter relative to the Loss Function L{g) = 1 ~Cose for the

case B=0, i.e., a constant phasc,can be determined analytically as
~

az) @)
S
dz
_ 2
) = =35
l 2 o o~ - o . ~
% = o= R % - %
dx 575 (Sin (x-x% dt + Cos x dv2 Sinx dvl)
9 21/2
where D = (Cl +Sl)

The reader should note the similarity between this filter which we call the
static phase filter and the phase-lock loop; they differ ounly in a non-linear,

i.c., data dependent gain factoxr, D,

In the general case with state noise (B,q # 0) one must first solve for the
conditional density function, J(x), as developed in Secticn 3; then the optimal
estimate relative to the loss function L{¢) =1 ~Cose is

Fal

S
* - 2
Xt = atn/\

i C
A

A . . )
where S, C are the conditional-expectations of Sinx and Cosx, namely

[8in (=) J(x) dx
[ Cos () J(x) dx

oy S

Now although not yielding a fully closed solution it is of interest to see what

_differential equation x* satisfies in order to relate the optimal non-linear

_filter to the PLLL., This is shown to be

w . dl
dx* = ~ 2
D22r
N\
(2) Cl and Sl arc relatedto Cosx and Sinx for B=0,

- 2.5 -
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with dI = |dz, — Cdt

A, | . : n2 A2 l/2
where the s denote conditional expectation and D= (§° + C7)

Now when R is small we show later that w = RD{-Sin x*,. Cosx*) and
Da 1 for small R so that the x* equation agrees with the phasc-lock loop

as it should.

Unfortunately in order to build the optimal filter as w and D are in general
unknown the above equation is not a closed solution and it is necessary to find

the conditional density s of X1 given zj ... z; . This conditional
n

e
density summarizes all the informatlion contained in gio sequence about the
phase, so that knowledge of this density allows the determination of the estimate
which minimizes any loss function. From our analysis for small R the
phasec-lock estimate effectively minimizes the expected value of 1 - Cos ( x-x%)
as x* ranges over all possible cstimators, as we have seen in this summary
and will see in detail later on the estimate which minimizes the above loss

forall R, x* differs by a non-linear gain factor from the phase-lock loop,

2

and, in fact, the minimum loss is 1 -D” =1 - R R for R small.

- 2.6 -
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We use a sequential convolution equation which updates ]n(x) to ]n+1 (x)

and evaluate the performance of xé 41

by Monte Carlo trials. The non-linear filter has been used as an effective

computed from knowledge of Jn 4 (x)

design tool for other problems with spectacular success, see Ref.2. The
thesis of Lo (Ref, 3) describes examples where non-linear processing is
mandatory for good performance. Finally we report some preliminary results
on practical synthesis using Fourier methods., The practically oriented
reader may comment that it is too bad that only a first-order phase model was
used, as in practise a phase-lock loop is pertinent only for detecting randomly
accelerating phases, Our approach was dictated by exigencies of time and

the fact that until the research of (Ref.2) appeared it seemed that two-state
dimensional problem required inordinate computing for Monte Carlo evalu-
ation, We plan to investigate the general problem in the next year and feel
that the nou-linear approach offers even more spectacular pexformance

betterment for this more realistic problem.

-2.7 -






3. BASIS OF THE DISCRETE SIMULATION

The ultimate objective of the present development is a phase estimator

working in real time. This may be either a continuous (analog) or discrete.

time {sampled) system.

The present simulation effort, however, is based on discrete time, digital

representation of the signal, measurement, and filter,

This section treats certain subtle points concerning the sampled representation
of the continuous noise-like signal and measurement, establishes the basis of

the discrete time model, and the optimum phase-locked loop and Kalman-Bucy

filter to sexrve as points of reference for the non-lineax filter,

3.1. The Phase Signal in the Continuous Domain

The continuous signal serving as common input to all three estimators
corresponds to phase modulation by integrated white noise as might corre-
spond, for example, to either frequency modulatiocn by a random white
noise-like signal or doppler resulting from a target moving with velocity
modeled as a white-noise-like process, The observed signal with additive

noise is then

s(t) ACos [w t + x(0)] + w(t)

)

where

1

t
x(t) K[ u() de
8]

or x(t) = Ku

w(t) is narrowband white noise of spectral density @O (two-sided)

uft) is low-pass white noisc of spectral density Gu (two-sided).

It follows that the spectrum of x(t) is

G (1) = ——3

- 3.1 -
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or defining

- q = K'G, , w o= 2t 3,3)
- 9
Gx(f) )

It is convenient to represent the additive noise w in terms of its quadrature

components

w(t) = wl(t) Cos (wot) - wz(t) Sin (wot)

where Wy and W, are low-pass, independent white noise processes of

two-sided spectral density

G. = G. = 28 3.4)
Wl WZ (8]

The negative signon w 2 here is chosen for later convenience,

The factor 2 in 3.4) may be viewed as arising because of folding of the

full IF bandwidth B into the low-pass bandwidth B/2 and may be confirmed
by noting that the total noise power is the same in either representatioun.

N With this convention

s(t) = ACos [U-)Ot + x(t)]+ wl(t) Cosugt ~ Wz(t) Sinwgt 3.5)

Now, since none of the estimators being considered depends on the carrier
frequency directly, the discrete simulation of this process is simplified by
considering it heterodyned down to essentially zero or D.C. Intermediate-
Frequency. As is well known, in order to preclude a loss of information due

. to the folding inherent in this process it is necessary to provide separate in-
phase and quadrature channels for the D.C. , I1.F.. At the same time it will’
be convenient to normalize the amplitude A to unity. Accordingly, multiplying
by again 1K ,heterodyning by the local oscillator signals (2Cos wot) and
(=28in wot) and discarding the double carrier frequency terms yields the zero

frequency IF terms zy and Zg

- 3.2 -
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zl(t) =z (2 Coswot)‘ s{t)
'
zl(t) = Cosx(t) + vl(t)
z,(t) = L (-2Sinw t) ¢ s(t)
2 A )
zz(t) = Sinx(t) + vz(t)
where v, and v, are independent white noises of spectral
) density (two-sided)
2%
2r = —T;-
A
and x is integrated white noisc of spectral density (two-sided)
2
q/u
The two signals z, 2, are biuniquely equivalent to s in the sense that
they are derivable from s by a simple gain and heterodyne operation and
conversely s is derivable from Z1 and Zy similarly. There is no loss
Vo’ or addition of essential information by representing the narrowband process
s by the two quadrature low-pass processes z1 and Zg (or the complex
process z, + izz).
It is convenient at this point to define the basic parameters
R = A2rq’
= phase error variance
pr = J2E
q
= time constant
for the optimal estimator in the associated linear problem.
j -
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3.2, Representatijon and Sampling of "White Noise"

The continuous signal described above, includes "white noise" sources

and as such cannot be represented with any fidelity whatsoever by discrete
samples at a finite spacing A. Nevertheless, we know intuitively that in
some sense the loop filter operation on such signals can be accurately |
simulated with such discrete samples provided that they are spaced much
closer than any significant loop time constants. To resolve these apparently
conflicting ideas it is necessary to observe that while we may in principle
refer to a particular signal as "white noise", physically it must have some
cutoff at high frequencies. Furthermore, any observing instrument we

use to look at the noise has its own high frequency cutoff so that we can never
see\ "white noise" even if it were present (for one thing, since it would have
infinite variance, it would immediately burn out our instrument). Thus,
whenever we speak of "white noise" what we really mean physically is noise
whose spectrum is flat at least up to frequencies high enough that they are
no longer of significance in the problem at hand, or "1ow—paés white noise”.

One way of dealing with such noise rigorously would be to assign a cutoff
frequency fc to each "white noise” generator, and very carefully keep
track of the effect of such cutoffs all the way through the circuit analysis
until the vary end where (hopefully) it could be shown that they could be
made high enough that they had no effect, i.e., that the circuit performance
was asymptotically independent of fC for fC greater than some critical

value,

There is, however, a simpler and more tractable approach in terms of the Ito
calculus of stochastic differential equations. This results from representing
11, 4 - " rt 1 2
a "white noise” process, say "w(t)", wherever it occurs as the rate of the
asscciated "Brownian noise" "W()" defined is the integrated "white noise";
t
‘N 1" L34 |
WU = [ w() de
5 1 1

For purely white noise the above integral has no meaning and must be
replaced by a stochastic integral, however, for physical "white noise" the

et ian o FomtTie Lmmdtfogam R I o tn tles aa e 2,-
operation iz perfectly icgitiniate and leads o the relationship

- 3.4 -
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nd%n - "W(t)” dt

where the quotation marks denote always that we are referring to band-limited

or physical quantities. Now physical white noise is not at all well represented
by pure white noise - there is infinite variance in the error of the best such

representation,
"w()" o w()

however, physical (bandlimited) Brownian noise is well represented by its

pure Brownian noise counterpart
W~ W)

so that at this point we can legitimately, if somewhat heuristically, forget
the physical bandwidth limitation (and the quotation marks). By this artifice
we make available to the problem at hand the full facilities of the very

powerful theory of stochastic differential equations.

A peculiarity of Brownian motion is that the variance of W() is given by
" 2 tt
E[W(@)*] = (J)‘ar Elw(t,) w(t,)] dtl dt,

but if w has two-sided spectral density 1 then the covariance function
in the integral is just J:(S(tl —t2) - 80

E[W(t)zj = rt

i,e,, linear in ¢,

In a formally similar way, since the successive increments of W are

independent
a2 2
ElaW “] = E[(w(t) d)”]

= rdt

- 3.5 -
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Thus we can write eqtn. 3.1) and 3.2) in the form of stochastic differential

equations (Ref.22, sec.2.6)

—
dZ = ACos [wot +x(0)7] dt +dv
dx = Kdu
2
where E[du”™] = gdt
E[¥Y) = ra
from which it follows also that
E[dx?] = KZqadt
~2 ~de
E(dz”] = E[dV°] = ra
Note that x(t) as given above is inherently a Brownian motion, in other
words, it inherently has a high frequency cutoif so that we can deal with
x directly. ' '
The reasons for this transformation are
e 1} We have obviated the necessity for dealing with intractable "white noise"
2) In place of white noise we now have increments of Brownian motion for
which a full and powerful theory is available (see Ref,1).
B Our estimates, as it will turn out, will involve differential equations
driven by 1z, i.e., equations of the form
Vv o= f§)+gl) - 2
or in the present nomenclature, since =z is a "white noise'" process
dy = f£(y)dt + gy) dZ
where & = ACos (wot + x) dt+dV
and we note that by the former rules
2 2
E[@)?] = ffa? +¢? Bl (dz)*]
= gzr dt
M’

- 3.6 -
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3.15)

3.16)

3.17)
3.18)

3.19)

3,20)
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We will also be concerned with smooth functionals, say g(y), of smooth
functions such as y(t) and the differential equations they implicitly satisfy,

That is, for any such functional:

dh(y) = h'(y)dy +3h ()’ + .. 3.23)

Now in ordinary calculus we would ignore the second turn on the right as being
of second-order infinitesimal; in the present case of stochastic differential
equations, howcver, we sec that it has a component, namely its expectation,
which is of first~order as given above, This leads to the very important

Ito lemma

1

dny) = h'(y) dy + 5 b"() E(dy)°] 3.24)

1l

dh(y)

h'(y) [£(y) dt + g(y) dz) + 5b"() g°x de 3.25)

The extension to successive fuactionals and to vector valued independent
or independent variables is obvious. »
Y We now show how the same concept of replacing white noise by increments
of its associated Brownian motion leads also to a precise and physically
" satisfying definition of its discrete samples. We have already noted that
= while any physically realizable observing instrument has a finite bandwidth,
the exact form of its bandwidth restriction does not matter provided the
bandwidth is in some sense "sufficient". Consequentdy we are free to choose
the form of the bandwidth restriction for convenience, One form of pre-sampling

bandwidth restriction that is particularly relevant is

-t

O[v(t)] = V(tl)dt | 3.26)

o L
——

“A
i.e., the normalized definite integral of the function over one sample interval.

This is just the integrate and dump transfer function incorporated in so-called
"integrating" digital voltmeters, Note,that by the normalization, that for a -
constant or slowly varying (smooth) voltage v

olviy] = vt-c) O0<e<A 3.27)

Fary

- that is, a valid saimple of v at some intermediate point by the mean value theorem.

- 3.7 -
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The transfer function equivalent of this observation operator is a low-pass-~type

having zeroes at all multiples of the sampling frequency so that on sampling
at intervals A there iIs no aliasing of high frequency parts into very low
frequencies. Our sample then for any function v{t) defined in the continuous

domain and which may include "white noise"” or smooth variables is;

v,o= Olv (nA)]
U
= - vit t
B
v, = -}SW(HA)-G((H-UA)]

- - - - . -~

i.e., our samples are just the increments of the Brownian motion v
associated with v, This somewhat drawn out definition of what we mean by
]

a sample is essential if our sample is to have any meaning for "white noise'

as well as for better behaved functious.

It will be important for the following parts to note that if v is white noise

of spectral deasity r such that

E[@¥)%] = rdt

then
.2 _ XA _ 1
thl T T

This is fully equivalent to stating that the sample process has an effective

two-sided noise bandwidth

[ Lo

eff

since then

]
-
e

1

2.
E[vn_]

i

eff

3.28)

3,29)

3.30)

3.31)

3. 32)

3.33)

3.34)



The important thing about this operational definition of the samples is
that if the continuous functions are related by a given stochastic differential
equation then their samples so defined should be related by the corresponding

difference equation.

That is, if
dy = £(y) dt+g(y) dV

then for sufficiently small A we should expect that:

Yy = Vp-1 = AL, _)+et,_ )]

-

Eqtn, 3.36) is indeed seen to follow from 3.35) and the above definitions if

we integrate over one sample period

DA nA »
dy = [ f(y) dc + [ gly) dv
(n-1)A (@-1)A (n - 1)A

but for A~ 0, since y, f, and g are smooth this approacflcs

Vo=Vaop = K, PA+EG, ) A Z (A -T(m-1a)]

-

1

AliGy, ) +el, o) 0 v,)

from the definition, eqtn. 3.28), q.e.d..

Also, as a special case, for our measurement equations which appear in

the form

A

dz

n

h(x) dt + d¥

it follows that

1

Z

n h(xn) +v,oo.

- 3.9 -
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3.3. Digital Representation of the Signal

'
Based on the foregoing theory, the digital, i.e., sampled, simulation of the
signal process may be represented by the following equations,
X=X gty 3.37)
z, = Cos(xi)-]—vl‘ 3.38)
i i
z, = Sin (Xi) + v, 3.39)
i i
Vs Vo ,’ and u are independent random normal variates with variance
defined by
Vo= v = 3.40)
1, 2,
i i
ui‘ = B 3.41)
To relate to the continuous case let one simulation step represent a real-time A,
., . Aserially independent discrete process suchas u or v may be regarded as
-
having an effective two-sided bandwidth equal to % . Cousequently the
spectral densities are
2
_ G = G = VvI'A
v, Vo 1
= AC 3.42)
Thus, to relate to the continuous case, eq. 3.4):
_ 2r
C = N 3.43)
The integrator gain K as defined by eq. 3.2) for the continuous case is seen
to be implicit in equation 3.37). Thus, considering u a constant,
X. = 1iu
i
or -
xt) = Lu
JAY
= L
_ = 3 udt

- 3,10 -



Thus by comparison with 3.2) the implicit integrator gain is

—
1
K =2
so from 3. 3) KZG
G, = —5
X w
. _AB
A2w2
= .9
w2
. o
B = qg*A
It will be convenient to define, for future purposes, the basic parameters
_Jo .1
F =Yg = Z¥7q
and
Y
R = JBC = J2rq'
- It will turn out that F plays the role of the filter time constant in sample
interval units, while R is related to the variance of the ideal estimate.
'\|vf

- 3.11 -
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4. KALMAN-BUCY FILTER-LINEARIZED PROBLEM

The discrete Kalman-Bucy Filter operates directly in the discrete domain on

observation consisting of equations 3, 38) and 3.39):

N
1

. COSX1+V1.
i i

N
it

' Sin X, +Vy
i i

where x(t), the desired phase information, is governed by the plant model,

equation 3.37)

where Vys Vg, U are serially and mutually independent random

variates with

| =l
DN = b

=1
]
ws]

Note that the presence of the Sin and Cos functions in 3.38) and 3, 39)means that
the problem is inherently non-linear. The non-linear filter to be discussed

in later sections performs optimally in the preseunce of this non-~linearity,
Thc;, Kalman-Bucy Filter theory pertaing strictly only to the linear problem,
i.e., where the observations z are linear functions of the unknown, x.

This theory may be brought to bear by approximating the problem by

linearization of equations 3.38)and 3.39), This is done by approximating them

as first terms in a Taylor's series expansion about a reasonably good estimate.

This approxiimation is good roughly under the same circumstances as the
linearized analysis of the phase~locked loop, i.e., in the high signal/noise
ratio case where the erroxrs are small. Accordingly, linearizing equations

3.38)and 3.39) around the prior estimate, x*ig

3. 38)

3.39)

3. 37)

3.40)

3.41)



z. =~ Cos X - (Xi - X'i") Sin X; v 4.1)

1.1 li
\uwr .
z2i Sinx} + (*{1 x§) Cosx + V2i )
in Matrix notation then the linearized problem is
= 7% -
Zi o Zi+Hi (}gi xi)-l—Vi 4.3)
zli
where Z., =
i z
2.
i i
Cos X
¥ =
Zi Sin x¥
i
-Sin x¥ oz,
H = i = 1
i Cos x’.l“ oxT
-‘| Ul' .Vl 1
V., =
i Vo
i
and- X7 Xty
Deunoting the covariance matrix of the random vector V by,
cC o
¢ 0 C
- The extended Kalman-Bucy one-step predictor of X1 is given by
(Ref. 20, 21} -
: r
% = x* -7
Xt = X+ Gz, 23 | 4.4)
where the gain: : R
G, = PHT[HPHT—F(!I]_l 4.5
i = R LR -5)
5§ v'
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which simplifies to

Pi is the one-step predictor error variance (of the linearized problem)

given in general by
-1
_ T 1-1 -1
P, = (i ¢T'H4PI) +B
which simplifies to

) P._,C
P, = B+ o
i P, +C

In the steady state, P, =P, , = P and we can solve for P as the positive

root of
PC

P = B+ —

+C ,
2
= B, /B
Fo= g+vg +C

In the present case - since the state traunsition factor (coefficient of X,

or

1
in 3.8)) is 1, the prediction estimate is identical to the filter estimate,

however, their errors are different since

* - %
Xit1/i /i
but

xi—]—l = xi+u

80

X x, - x¥, +u,
i 1/1+ i

ek
il T ML/

CN——— |

predictor filter
error error

or calling S the steady state discrete filter error
P = S4B

wheis B = wvar (W

4.6)

4.7)

4.8)

4,9)

4.10)

4.11)
4.12)

4,13)

4,14)



Thus

g = Aaenc -

Note well that P and S as derived here pertain only to the linear problem

4,15)

o)

and as such only approximatc the actual performance of the filter on the real
non-linear problem. The true steady state error statistics may be derived by

the Fokker-Plank analysis (Ref,6 and Sec, 5.1) and are confirmed by our simulations,

Equations 4.10) and 4.16) can be expressed simply in terms of the hasic

parameters F and R as previously defined by

RIV1+-L5 + 5 | 4.16)

F -
AF »
—_——
— [ 1 1
s = rI/1+-1 oL £.17)
K . 2F:|

Notice that for large IF, i.e., as we approach the continuous case with a very
small sampling interval,the predictor variance and the filter approach one

another:
P -5 - R 4,18)

and in particular for F = 10 the two cases (predictor and filter) are within
about 5% of 4 0.2 db of the asymptotic (continuous case) value, R. Notice
that F = 10 corresponds by equation 5.7) to a sample rate 10 times the time

constant of the optimal phase-locked loop.

Also note that in the steady state, as Pi approaches P, the gain Gi

becomes constant, approaching

o

T = —L _ u#' 4,19)

and the estimator becomes, from 4.4), written out in detail:
P

|ASin(x - x2) = v, Sinx? +v Cosx? | 4.20)
e 171 1 1 2 i
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In other words, in the steady state, i.e., after the first few time constants, the
K-B filter, with adequate F, approaches the exact point-by-point performance
of the phase-locked loop. This point-by-point correspondence was confirmed

in the earlier simulation runs, and subscquently, the K-B filter was not rua,
since its only advantage lies in improved tracking during the initial turn-on

transient,

For large R, the gain term here approaches (by 4.18))

£ Rﬁc - 4.21)
- P+
. .

So that in the steady state, the K-B filter becomes

!
4

¥*
+

x¥ = 3 —
i1 i I1+F

[¢/]
H

: ex¥Y - T *
Sm(xi Xi) v15mx +v2Cosx

As we approach the continuous case by letting A—- 0, F becomes >> 1 and

we have in effect

l .
* = xF g o=
X517 X tye ’ 4.24)

In the limit as A — 0, 4.23) or 4.24) Jead to the corresponding continuous

equation
X* = —*F%ue : 4,25)
where F* = FA
2T
- ———— 4.26
J - _ )

This is exactly the phase-locked loop equation so that in effect we have shown
two things
1) The K-B filter for the linearized phase estimation problem reduces

to the form of the phase-locked loop in the steady state

2) The resulting steady state K-B gain parameters may be taken as

the basis for optimization of the phase-locked ioep.
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5. PHASE-LOCKED LOOP

The generalized phase-locked loop diagram is as shown below

Cos (wot + x(t)) + v(t)

(0) :

~2Sin (w,t + x*(t))

. VCO
w/s)

Y (s)

The phase detector equation is:

i

- i % ,
e [ 2Sin (wot + x*(1)) [ Cos [wot + x(t)] + vy Cos w t

-v,Sinw t
2 © ”ﬂlow pass

Sin [x(t) - x*(t)] - v (t) Sinx* + v, Cos x*

it

I

-Sin x* zl(t) -+ Cos x¥ zz(t)

_In the small erroxr case

e = (x-x”‘)-—VlSinX*-i-VzCosx*

and the linearized analysis from the K-B theory of the previous section

applies.

From the prototype

x* = Y(s) e
s

and as has been shown from the K-B analysis, the optimized loop for the first-
order problem at hand satisfies
ko= o

= e

F*

5.1)

5.2)

5.3)

5.4)



\\vf

-t d

so we identify

Y(s)

- JE

2r

i.e., simply a constant. The corresponding mean-square phase error is

then as for the steady-state K-B:

& - x)°

= R
= J2rq"
Also the loop time coustant may be identified as
_ 1
LR <

and the loop two-sided noise bandwidth in cps (two-sided) is

2B

L 1/27

F*/2

1

5,1, Nou-Linear Analysis of Phase-Locked Loop

These are the principal results for the linearized first-order phase-locked
loop and may be expected to hold quite well provided R in eqtn. 5.6) is

less than, say, 0.1. As the noise level increases, howevey the linearization

inherent in eqtn. 5.3) breaks down. Analysis of the non-linear threshold
region of the PLL, has been carried out from a number of different points

of view (Refs. 7,8,10). Most of these are approximate treatments valid for
small nonlinearity, i.e., at the onsect of threshold. In the particular case

of the first-order loop, however, an exact solution is possible as developed
by Viterbi (Ref.6) by the Fokker Plank analysis. Viterbi's analysis is for the
case of no noise on the plant, i.e., an essentially static signal {phase)

but for a given loop gain or (bandwidth) but can easily be extended to the case

including signal dynamics.

- 5.2 -
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The basic describing equations are 3.2), 5.2), and 5,4) which can be written

for a fixed gain Y:

¥ = Ye
e = Sin(c-x¥) -~ vy Sin x* + Vo Cos x*
x = Ku

or denoting x-x* = ¢ = estimate error

€

-YSin(e) + Ku ~ le Sin x* +YV2 Cos x*

Here Ku is the state noise of spectral density q and Vi and v, are
indepeﬁdent quadrature components of measurement noise of spectral

density 2r,

Then by the Fokker~Plank equation the differential equation satisfied by the
probability density, p{c,t) of € is

2
3ple,t) _ D 1 8% 2
—yT = sz (bp) + 5 —""a€2 ©7p)
where L = "infinitesimal mean" of €
= ~YSine
6% = "infinitesimal variance” of €

q+ Y2 .'Zr(Sin2 x* + Cos2 x*)

It

g + 2ry?

In the equilibrium condition (g—%) = () and for the boundary conditions
imposed by the fact that p is a probability density on =-x to 1(1: the
solution of 5.10) is

¥ As pointed out by Viterbi , there is no equilibrium variance of error considered
on the line ~-w, ©», Only the module 2n ecrror has such meaning and it is

in this respect that we define €.

- 5.3 -
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exp( C(f){s £ )
ple) = - 5.13)
Ly
+2ry°
where R, = df=f! 5,14}
1 2Y , '
If there is no state noise (q = 0) this reduces to
Rl = IY 5.15)

which is just 1/a in Viterbi's terms.

If the loop is optimized in terms of Y with state noise on the linearized basis
2y . .
by 5.5) or equivalently, by noting that from 5,13),{c”) is monotone in R, and

simply minimizing Rl 5

eqin. 5.14), then

and

R1 = W/2rq 5.16)

opt
= R as defined by eq. 3.23).

The variance of this distribution {(eq. 5.12)) is plotted in Figure 5-1 (from
Viterbi, Ref. 6) and labelled "exact” along with two other approximations
(Refs. 7,8) to the non-linear phase-lock error. This will sexrve as g standard

of comparison for the simulation runs later,

It should be noted at this point that in the limit of R -0, i.e., zero input signal/

.noise ratio the phase noise {€2> approaches a finite limit, This occurs when the

distribution in eq. 5.13) approaches uniformity over 0 to 27 and the

associated limiting phase noise variance (of error modulo 2x) is

A 3.20 Tad® |

o.;! Ao

2 _
’(e >max -

Also note that at worst the phase-locked loop is 2.2 db worse than the ideal (but
unobtainable) linear model, Measured in these terms then, that is, in terms
of uoise ouly {iguoring signal suppression effeets) it scoms ¢lear that 2.2 db

is the muximum mprovement over the phase-jocked loop that one could hope fox,
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5.2, Discrete Phase-Locked Loop

In the light of the foregoing discussions the discrete phase-locked loop repre-

sentation may be taken directly from the steady state K-B, eq. 4.23)

xt, = X+ (l'ﬁY e, 5.17)
where e; = Sin (Xi - x’i") - VliSin x¥ + vziCos x*
= =Sinx* Zli+ COS}(*Z:Zi
, Fo= 2/E | | 5.18)
- 5.19)

In general, F may be interpreted as the number of sample points per loop
time constant, Preliminary exploratory runs have confirmed that F =10,
i.e., 10 points per loop time constant is adequate for roughly 10 per cent
accuracy. Specifically it was found that the RMS discrepancy between
points run with IF =10 and with F = 30 for the same continuous noise

sample was less than 10 per cent (R= 0.5 and R=1).
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6. THE NON-LINEAR THEORY

In this section we will describe the results of the general theory necessary to
understand our approach to phase estimator design., The details of the
theory can be found in Ref,l, while our general techniqué of sequential
determination of the couditional deusity via Bayes rule is described in Ref.2
and Ref. 4. In particular Ref, 4, which forms Appendix 11, treats a very
simple problem and consequently may be read to understand our digital
computator methods for the realization of sequential update for Jn(x) as
well as detailed derivations of the sequential update for Jn’ or in

statistical parlance, Sequential Bayes Rule. For a general introduction to

the aims and methods of filtering the reader might do well to study Ref. 5.

In order to fully understand the results of the continuous time problem the
reader should familiarize himself with the Itoc lemma, it is a fundamental tool,
which may be replaced by Taylor series arguments only at the risk of long
error-prone and devious calculations, We will illustrate this lemma by

deriving various results stated in the introduction.

Let ]n(x) denote the conditional density of phase P, given the observation

Z, .. +Z; ,then it is easy to establish the following recursion relation
n-1 o]

Z; Cosx+z2 Sinx 9
o n n _ -
2B
Joa® = K[ e C c J () dx

]O(x) = the prior density of x

K chosen so that I Jn+l(Y) dY = 1.

For a derivation of eqtn, 6.1), see Rel.1 page 59, or in detail, see Appendix 1,
Notice that the model eqtn. 3.1) and 3.2) and the Gaussian assumptions have

been used to derive eqtn, 6, 2).

6.1)
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For many purposes, it is much easier to derive results in the continuous
problem, instead of from the sequential Bayes Rule given by eqtns. 6.1)

and 6.2), in Section 3 it has been shown how B and C can be selected to
assure that the discrete data rate is equivalent to continuous observations.

Of course, the phase detection problem is inherently a continuous problem,
however, we consider the analogous discrete problem in order to have accurate
digital realization of the filter and also because some facets of the problem are
easier in this case. In order to state the continuous analog of eqtn. 6.1)

it is neccssary to introduce the concept of random differential equations such

as
dx = f(x)dt + ox)dB 6.4)
This may be regavded as a more rigorous and tractable form of the equation
x = f(x)+o{x) wd

where w(t) 1is a "white noise" process

and

t
B = [ w(x)dx
o

we assume for simplicity x is scalar valued. Physically, eqtn, 6.4) can
be interpreted as the change in x in the time interval (t,t+dt) is a mean
drift £(x)dt and a diffusion o(x)d8 with df the corresponding increment
of a Brownian motion process, see Ref.l for details. One of the useful yet
disturbing properties for novice of these cquations is the Ito Lemma: If

V{y,t) isa twice-continuous differentiable function then V (x ,t) with" X,
L

a solution of eqtn. 6.4) is the solution to the equation

v = [BB;V+ ) 3 (X) BZV:[dc £V 000 B 6.5)

Formula 6.5) is what one would expect, a direct generalization of the

Eulerian derivative except for the term

Gz(x! 82V -
2 2’

ax

[ian
~t
Q
jib)

which arises as the square of the diffusive term, o{x) d3, is equivalen
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drift term, 92(—}() dt. For example, the solution of

dy = Bdp

2 BZ

is %— -5, ot = as the unintiated might expect. In particular, for the
problem which interests us, namely the model eqtns. 2.3) and 2.4), the

continuous conditional density J(t,x) of the phase x satisfics

Qs

2 N N\ ~
di{t,x) = % —a% dt + (Cosx — Cos, Sinx -—Sin)i‘:ll-; dl J(t,x)
X

o

where 1 is vector Innovation, defined by
~ N\

b

~ dz1 - Cosdt
d =1 o .~
d22 - Sindt

L.
The dI process is called the innovation and represents the instantancous

new int’ormation(l) carried by az, ; at time t. The spectral density of the

2r 0O

0 21l 2 (i.e., itisa

vector additive measurement noise process v is

' 2
white noise vector process). Equation 6.6) has drift % B—-Jz— dt reflecting
ax

mean movement of the phase process inducing a change in J, a model
following action and diffuses propoxrtionately to a weighting of the new infor-
mation, A derivation of eqtn, 6.6) using the vector form of the relation 6.5)

can be found in Ref.1, page 50,

From the Ito lemma, eq. 6.6), the conditional expectation £ of g(®) can be

shown to be the solution of the equation

AN
0 = $28 ac+ (G0od - §Cos, Eoin -~ ) S dl
Ox

1. The information about x carried by d?:'i(t) for all t £ t. not carried

1
by dzi(s) forall s ty) t2< t .

- 6.3 ~
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Of course eqtn, 6.7) follows from 6.6) by multiplying 6.6) by g(x) and

integrating both sides of the equation from -« to « , with the drift term

value a consequence of integration by parts, It follows in particular that for

= Sinx or Cosx

dsS

dc

where

where

"

_9q Lo a1
2Sdt-!—zl_ k]. dl
=4 1 . a1
2Cdt+21_ k2 dl
FaN AN 1
kl = 1SC ~-S§SC
DA
g? - 5?2
A I
k, = | -€?
A\ AN
SC - SC
A N
S = Sinx
€(3\= Sinx Cos X
ete.

6.1, Relation to the Phase-Locked Loop

As will be shown later the cyclic estimate, which minimizes the loss function

1 -.Cos €, is defined by

x¥

Tan -1

D

and the associated optimal loss is 1-D where D2 = (32 +8%. An

easy but worthwhile exercise involving the Ito lennna(z),as the gencralized

vector form of 6.5) is known, is to derive the random differential equations

satisfied by D

dx*

db

and x¥; they are

i

1 _‘gd"iv
7 Atwdt - —5
D 2r D 2r

S o2-db
(2D+--pm)m+

2. See Reif.l, theorem 2.2, page 21.
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A Fat
where 4 = C.k_z-FS_lgl
e A
¥ = Sliz"c.iﬁl
A del A
with C = Cosx etc.

Suppose R is small and D reaches steady-state then it can be shown that
to first order in R
L = 0

%D

I

1 2
3 I wil
4rD

since both the drift and diffusion must vanish in steady state. From 6.12) kl

and k., must be parallel and

2 .
k, = aCosx*e
=1 - with ”e” =1
_I_c_z = =—aSinx*e
for some as yet unknown a,
But then w = =—-aDe and by 6.12) and 6.13)
a2 = (R’D’ by 6.13)
or wo o= - R D2 o

Now e may be evaluated as (Sinx*, — Cosx*) since,when R is small,
the phase is Gaussian with mean x* and variance R. Hence our assertions
in 2,8) arc validated. When B - 0 eqtn. 6.1) can be shown to have the
explicit solution;

a, Cos(x - ‘i’n)

e
J &) =
n ano(an)
whence x¥ = ¥
n n
‘ v n;l n-1
where aen=iZz+iyz
n 2r 1n L 2
j=0 j=0 "
and zy = aOCos‘FO sy Zg = aOSin‘i'O
o 0
aOCOS(x-‘YO)
with ]O(x) = e

p 7
2 7T IO \ﬂ.o)

I0 = the zeroth order Bessel function of imaginary argument,

6.12)
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The continuous version of the estimate provided by 6.16) adapted to the case

where B is small |
da = Qa dt+8dzl

db = ab dt+8dz2

L = Tanl R
a
and if B = 0, choosc o = 0. Again it is intercsting to find the stochastic

differential equation satisfied by x° which is

. &’ = % (Sin{ep - Xo)dt + Cos X dv2 - Sinx° dVl) ) 6.18)

with L = (2+b)'/?

phase-lock loop but with & non-linear gain B . As we shall see the static

. We again emphasize that 6.18) is a

phase estimate which we call x° exhibits numerically good performance.
Notice that 6,17) and 6.18) show that the x° estimate no matter what choice

of @ and B 1is a phase-lock estimate with a data dependent gain, which can

be shown to agree with the general form of the optimal cyclic, when the
condition distribution of the signal given the observations is symetric about x*

Ve’ p(x) = p(2x* - x), an assumption which seems valid from our digital runs.
To conclude this section it should be emphasized that a study of the problem

- where the phase is the output of a second order system can be accomplished

easily along the same lines as we propose here,

N’



7. CYCLIC SOLUTIONS TO THE NON-LINEAR PHASE ESTIMATOR

The basic output of the non-linear phase filter is the conditional or a posteriori
probability density function of phase, Jn(x) where x denotes the phasc an%h
]n(x)dx is the probability based on all observations up to and including the n
that the phase lies between x and x+dx. As originally derived x ranges

from - to +«.

For phase tracking circuits in particular, however, two types of requirement
must b;e distinguished,
1) Absolute phase required as in CW cycle counting tracking systems,
e.g., MICROLOC, TRANSIT, DOVAP, UDOP, and many others.

2) Modular phase required. That is, the integral number of cycles is
not important, only the phase modulo 2x, as in frequency or phase
modulation discriminators or filters for estimating phase for

coherent detection.

For the present, we concentrate on the latter type of problem; this leads to a
class of cyclic estimates of the phase.

In general, after having tracked a noisy signal for some period of time the
pha’sé density function ]n(x) exhibits a multi-modal nature with modes spaced
at intervals of roughly 2x, An example is shown in Figure 7-1 which is the
noun-linear filter a posteriori probability density after having tracked for 35
time constants of the optimized phase-~locked loop and where the signal/noise
ratio in the optimized phase-locked loop bandwidth is zero db, i.e., about

4 to 6 db below what would normally be considered phase-locked loop threshold.

The phase density is the complete answer in the sense of Siegert's "Ideal Observer",
or Wald's Bayesian thcory, i.,e., it summarizes all the available information without
loss of information but it does not explicitly provide "the phase estimate”, and as in’
all such protlems this is somewhat arbitrary and depends on the definition

- 7.1 -



of a loss function to be minimized., That is, if we associate a loss function
L(e) with a given error of estimate then the expected loss given the a

posteriori density, if we estimate x*, is

(e}

) = [ J) L (x-x") dx

-0

E(L

and the optimum estimate relative to this loss function is that which minimizes

the expected loss, i.e,, the solution

el

0

o
It

T J(x) L'(x=x*) dx

The common "least-squares estimate’ results from assigning a quadratic

loss function, i.e.,

2

L&) Ke

1l

Then

L'(=) 2Ke

and the least-squares estimate is the solution of
[ee]
0 = 2K[ (x-x*)J(x) dx
-0

o«

or since j‘ Jydx =1

-0

<
x* = f xJ(x) dx
-0
which is to say just the mean or expectation of Xx.

This is a reasonable sort of estimate for densities which are unimodal but
obviously may result in somewhat ridiculous answers for a multimodal, quasi-
periodic density such as Figure7-1. For example, in this case the least-squares

or mean value estimate may tend to fall midway between the two major modes

where the probability density is actually very low. By attempting to compromise
in this sense we would actually come up with a very poor estimate, one for which

the error, modulo 2x is much larger than the width of the individual modes,

-7, -
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Clearly what is needed is a cyclic loss {unction, i.e., one for which
IL{e) = L{e+n2x)

for all n. If the loss function is cyclic in this sense, then the total expected

loss becomes

E(L |x%)

11

e
=] 1
w78 g8

J(x) L(x-x*) dx

f[ J(x 4 n2x) L{x) dx
o T

n

[ T L) ax
-3

where by definition

=]

Z J(x +n2x)

= =0

it

T

In effect we have thus taken the density J defined on the infinite line and by
wrapping it around the unit circle and adding the contribution from each wrap
come up with a cyclic density function A]’ completely defined by its values in
any one principal 2x interval and from which the expected loss for any cyclic

loss function can be computed, Note that for normalization
) f Jxydx = 1
-1
since J(x) is a density function,

Now we come to the question of choice of a loss function, Consider the cyclic
density as representing a mass density distribution around a unit circle as
shown in Figure 7-2. How would we rationally estimate "the phase"” x*. One
way that is attractive from several points of view is stick a pin through the
center of the circle and see what point hangs down under the attraction of
downward gravity, calling this the "center of mass on the circle” or the phase

estimate. Mathematically this is determined by setting the resultant turning
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moment to zero or

0 = ff(x)sm(x-x*) dx
-1

Note that this results from choosing a cyclic loss function

I{e) = 2(1 -Cose)
= 4Sin2§—

as shown in Figure 7-3 for then

L'(¢} = 2Sine

-

leading to equation 7.9) for the minimum loss estimate, This is an attractive
loss function from several points of view, namely

1) Inthe vicinity of ¢ = 0 it is quadratic, i.e., L{e)~ ez

2) It is symmetric and cyclic.

In order to solve equation 7.9) we can expand the Sin term

T
‘f J(x}(Sinx Cosx* — Cos x Sinx*) dx

Q =
-x
or defining
A T oo
C = [ J(x) Cox(x) dx
-1
A

T .. ’
[ T(x) Sin(x) dx
bl 14

the conditional expected values of Cos(x) and Sin(x) respectively, the solution for

xk follows from

1t

A
0 S Cos x*® - GSinx*

x* = Tan™!

(@pllde)

It is of interest to consider the expected loss associated with this estimate,
which is the natural generalization from the variance in the case of the least-

squares estimate,

7.9)
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Thus

J’K 760 241 - Cos(x - x*)) dx
L |

E(L]x*)

i

B .
2 -2 ‘f T(x)(Cosx Cos x* + Sin x Sin x*) dx
-

A -
2 - 2(C Cosx* 4 SSinx*)

u}

a2 . A2
~
NG LN R

2

2-2

it

21 -6 187

It is clear that 62 +§2 < 1 with equality only if all the density in T

is concentrated at one point.

7.1. Recursion Relation for the Cyclic Density

One of the attractive features of the cyclic density is that it affords potential
gignificant simplification of the recursive computation of the density function
which comprises the bulk of the computational problem. In fact, we can derive
a recursive algorithm for computing T directly without ever computing J.

This proceeds as follows, The recursion for [ is
Jop1® = K[ Q-0Q @z -NON ] () &

where QS(t) is the probability density function of state change t

Qm(t) is the probability density function of measurement
noise, t

. t .
Z isthen b observation = vector (1 ,29)
n n 33

H(y) is the value of the snesor for phase vy,
e.g., Siny or Cosy
K - is a normalization constant,
For Gaussian state nolse and measurement noise, QS and Qm are Gaussian

Tunctions.
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L ol

Now let us form from In-{—

n+1 1
Tn+l(x) - z Jn+l(x+m2ﬂ)
me-= -~ 0

)

), [ ou-xmziQ(z, -HEN 1,0 ¢
ms= =

Let u=y-mix

T,.0 = K) [ Qu-»Q s, -Hutm2) I ) du
. me - -0

But since the observation function H(y) is already itself a cyclic function
(Siny, Cosy) of its argument, the m2x has no effect in the argument of

H, consequently

Ped

100 = K[ Qu-0Q = ~HE)T ) du

o]

~

where Jn(u) = z ]n(u—l—mZyc)
m=~w

Finally, since Qm and T are both cyclic the integration range can be
reduced to the principal interval by defining in similar way

o0

Q. = ) Qtpzn)
p:.—.. -0
then
w~ 1 o~ ~
00 = K[ Qu-0Q (2 ~HO I G dy | -x<x<x
-
That is, Tn a1 follows from a recursion of identical form to that for Jn-}- 1-

In this case the normalizing constant K may be found from the condition

it

T
1 = 1
-x
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What we have accomplished here is that f need only be computed on the

range -g to g rather than the much larger range representing the total

 diffusion of probability density on the infinite line. This may represent a

substantial reduction of computations,

The program, D13, was originally written to compute density on the line
~w < x<« but subsequently rewritten as D14 to compute density as
above on the circle ~n<x< g in order to achieve greater accuracy (finer

grid meshing) for large R. Both programs are described in Appendix III.
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FIGURE 7-2
CYCLIC DENSITY ON THE UNIT CIRCLE

FIGURE 7-3
CYCLIC LOSS FUNCTICON L(c) = 2(l-cos &)
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8. FOURIER SERIES EXPANSION OF THE CYCLIC DENSITY

The periodicity of T(x) suggests the possibility of representation in Fourier
series, The Fourier coefficients themselves in place of the A]‘(x) function
afford attractive possibilities for simpler computation if convergence can be
established and a direct recursion relation between the Fourier series is

established.

Define Fk as the complex Fourier series coefficient of order k in the

. ”~
expansion of J{x)

Tt X '
~ ikx
F, = f J(x) e T dx
s
Then
~ _ 1 -ipy"
o) = =) E,e
p:-OD

Now A]’(x) has been shown to follow the recursion
lad it L -
Jpp1(® = Kjﬁst-:s) QnZ, - HON I ) dy

-~
Using similar expansions for QS and Qm define

TC .
_ o~ itx
s, = [ Qe dx
14
2
®© e o tx
= —1_ f e 2B dx
2B o~ :
_pt?
I
= e

50
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)
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A,
Py
ot
1]
&

[l

i

_Bt

1 o 2 e-it(y-x)
2

W D~78

- CO

A similar expansion for Qm

(z1 ~-Cos y)2 + (z2 -Sin y)z

is available by writing

. ’ 1 2C
Q (Z-Hy) = e
25xC
Zy Cosy + ZZSiny
= K1 e C
21,2
where Kl — e 26
2xC
o or defining
. iy
zl-!-lzz = ve
) z, = vCosY
2y = vSinY
S0 _ %—Cos ¢-v)
QZ-Hy) = K e
o
- - Yy WY =)
QE-HEN = K ) I(Lye
Ir'= - .
The latter following {rom, e.g., Ref. 19, #9.6.34.
‘|Ed .
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Then using 8.1), 8.2}, 8.6), and 8.9) in 8.3) gives
. 2.
| I e ()
— -ty -x v, ir(Y-
Fy = ‘J' ‘f z Z e e MV Ir(f) e ¥
n+l (21r) - - -

p— =@ == ==

F e-ipy eikx

dy d
(footnote 1) Ph v

The x integral gives 2x6(t+k) so

k

[=~] [=¢] - —
_ l r 2 itky+rY -rypy) v
P p Tf Loh T e I (@) &
r:

F, = KK ) F_e 7 0¥
n+1 - P

pal
|
=
-~
~—
)
[0
~1
os]
4]
[
=
1
Z
e
—t
—
<

p=-®

The normalization constants may be evaluated by simply noting that the zero
order coefficient is just the total probability integral
F

o
n

1

X A
J 10 dx
-1

or

—
1l

(KK,) z R, e'iPYIp (=)

n
p= -

Note that the cyclic phase estimate defined previously

x¥ = Tan"1 (§/€)

1, I:fc denotes (I z , then th discrete time point of the Kt th order

Fouricr coefficient,
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is given simply in terms of these complex Fourier coefficients since

T . .
B, = [“](x)elxdx

A A
= C+1i5

by their definitions, so

x* = arg (Fl)

Also note that 8.10) can be simplified if desired by using the symmetry

relations, the first arising from the fact that J(x) is a real function

Fp = F*p (* = complex conjugate)
Le = 1,0
S0
B -
_ 2 iky v -ip¥ v
P, = ®pe 2 M [1 (o) F, e Ik_p(c)]
n-+1 . p=1 n

' v N -ip¥ v -
where K, = L10(5)+27&_z e Ip(’ﬁ)]

Fo
p=1 "

8.1 Difference Equation Form

Equation 8.10) provides a closed solution to the problem of a discrete update

for the Fourier series.

In this form it is not immediately clear how this approaches the continuous

case as A — 0. What we need is the dilference equation corresponding to

eq. 8.13) in this limiting case., This can, in principal,and has,in fact, been

worked out by a careful Tayvlor's series expansion.
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A much more direct route, however, lies in the simple application of

eq. 6.7) which states that, for the problem at hand and given any functional

g(x), the conditional expectation of g satisfies the differential equation given

in eq. 6.5)
2N
an q@d 1 gCos x —ECosx T
g = & —&dt 4= A
2 ax2 2r gSinx —ES'mx
where c:lﬂl'l = d'il-Cosx dt
~ a .
q:lI2 = dz,z—Smxdt

Notice that since this is linear in g it apphcq for complex as well as real

g. and if we define the complex innovation T = Il + 1I2 this can be written

22N — TN N s
dg %?._5 dat + -—“ﬁ?{ -ix @e'”‘] dT}

3x

for real g or

dIl

dl,

S A S
dI —}-l:ge —/g\elx:ldl

D BXZ 41‘ Lg
where 1 = (zl + '122) - F1

Applied to the case at hand, let

ikx
g = ¢
so that
ikx
gy = €
= Fk {per defining eq. 8.I1)).
Then
2 ~
N L L - T
dFk = 5 det+4r{(FL 1 FI—')dI

8.14)

8.15

8.16)



In particular the first order coefficient is given by

2
R <) P Cn20
dFl = S Fl dt -+ e {(l 1) dl + (F2 Fl) dl} 8.17)

This will be found to lead to an easy circuit mechanization of the optimal

non~-linear filter.

Separating 8.16) into its real and imaginary parts denoting

Fk = Ck+iSk

2 ~
EE— ..‘.l-... - d 1
dc, 5=Cydt +7=4(Cp _ + Gy, - 2G,C DL+ (- S, .1 +5.41 — 26,8410 818

n

2
_ gk 1 -
clSk = S8 dt+4r {(Sk-l+sk+ ZSS)dI +\Ck-l C]<+ ZSS)dI} 8.19
where Ck = Cos kx

Sk = Sinkx

By the appropriate trig identities this can easily be shown identical to the form
in egs. 6.8) and 6.9).

These differential equations for the Fourier Coefficients are attractive from
the point of view of medianization in a simple real-time tracking circuit as
will be shown later. The crucial question, however, is can a reasonable
number of terms of the form Fp » eq. 8.16), yield adequate accuracy and

we have not had time to answer this question in the present study.
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9. COMPUTING DETAILS

9.1. Determining M and F

As the reader may see from the Basic Language Program of Appendix 2 and
the later portions of this section the conditional density is computed by
representing it as a set of (2M + 1) point masses. A natural question

arises as to the choice of M in relation to the statistical parameters

F = “/1%_'. and R =BC" . InSection 2, we have indicated that F should
be fixed at about 10or more in order for the discrete simulation of the phase-
lock loop to have a sufficiently fast data rate in order that its performance
very closely approximate that of the phase-lock loop. Later in this section we
will indicate further experiments which justify this choice of F. Returning
now to the problem of selecting M for fixed F, it is clear that too small

an M will produce inacurate determination of the conditional distribution
and hence effect the quality of the optimal estimate. We determined M
experimentally by running our simulation of the non-linear filter with larger
and larger M on the same random sequence and selecting that Mo so that
1) produced by our program with Mo agreed to four
places with those produced when M = ZMO. Using this procedure it was
found that M= 56 sufficed for R< 1, while M= 112 was necessary for

R=1. These M's were determined for the program which realized the

the optimal estimates

density on the line, however, it is clear that these M suffice also for the

intrinsically more accurate program realizing the density on the circle.

Now, in Section 3, F was determined by noting that the extended Kalman-Bucy
is the phase-lock loop and requiring the pseudo-steady~state performance
(i.e., the steady~state solution of the riccati equation, not the true error

performance, since the model is not linear) of the discrete loop simulated by

1. The estimates are more sensitive to M than other parameters of the

conditional density, for example, its second-order moment,
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~ the digital computer to be close to the pscudo-steady-state performance
of the continuous time phase-lock loop. Because of this formal argument,
a further check seemed to be necessary. This check was provided by

considering two phase-lock loops

~1 _ ol 1 o _aly 2 AL 1ol
A G = % [ Bhege sl [ e
n=1,2,3,...
and
A3 3 1 . _ A3 »2 A3l Al:]
B iz = @ + 15T [Sm(qpn ®, )+ v, Cos P -V Sin © 9.2)
. n=3,6,9, ...
i i i
. - o T Va1 T Vo0
with V.=
n 3

7 Loop A receiveé data every A éeccmdé while loop B .recéi{r-és. dﬁta eve‘ryq 3Aﬂ

seconds and they are both approximations to the continuous loop {see Section 3},

a@ = L Sing-8) dr+av Cos? - av' sind) 9.3)

Of course, A pcrforms closer to the performance of eq. 5.4) than B and

as A -0 both A and B approach the error performance of 5,4), Our second
and more accurate determination of the appropriate F then consists in
comparison of 'c?;n with ’cBP])‘n . This was done and the choiceof F as

about 10 sufficed to produce agreement between ,q}l and @2 estimates which

insures the accurate simulation by a discrete system of the phase-lock loop.

9.2. Monte Carlo Analysis

In order to compare the error performance of one non-linear filter with another it
becomes necessary to evaluate the performance statistically by a Monte Carlo
analysis. We decided to run both the non-lineaxr and phase-lock loops for

500 time steps; 40 different times to find the mean-square errors of the

various estimators, phase-lock loop, static-phase filter, and the optimal

cyclic estimate at R increases towards 1, the expected time to slip decreases,
and our simulaticn was, in fact, checked again these mean-slip times, see Ref.0,

of the phase-lock loop.

- 9.2 -



On each run of length N time steps the error variance was calculated as
N
2 _ 1 Z 2
ST = N (ei) .
i=1

The distribution of S2 is then xz with a reduced member of degrees of

freedom dependent on the sampling rate parameter F, It can be shown that
the effective number of degrees of {reedom is
_ N
Negt = — 3~
1+ 2
’ 1+2F

for large F.

| Z

Then the sample variance is that of x2 with Neff degrees of freedom or

standard deviation

52 eff
Thus with N = 500, F = 10, N g = 47.5
crs2
— = ,205
S2

Averaging over 40 such independent runs, for a pooled estimate gives a

further ~40 reduction foi‘

2

SZ

That is, the overall error variance estimates are expected to have sampling

o}

= ,0324

|o

errors of about 3%,
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The results sunmarized in Section 10 for the phase-lock loop agree very
well with those predicted by Viterbi in Ref. 6 except at R =.1, This exceptional
case can be explained by our rule for slipping. The reader can examine our

program with a detailed description in the next section.
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10, SIMULATION RESULTS

10.1 Details of a Typical Run

Figure 10-1a,b,c, shows a plot of the phase-lock loop error and of the cyclic
non-linear estimate, x* = atn(S /C) for a typical 500 point run, This was

for the case R =1 (signal/noise ratio parameter) or about 6 db below what
is normally considered phase-lock threshold and F = 10 (sample points per

optimal phase-lock time constant), Overall statistics computed for this run

were
(M(e:p))2 = mean-square modulo 2x phase-lock error
= 1,22 rad®
(M(ec))2 = mean-square modulo 2x cyclic non-linear error
_ 2
= 1.62 rad

which is typical of the relative performance of the two estimators. It is to be

pointed out that we have here evaluated the performance in terms of mean-square - -

error criterion while the non-linear loop was actually optimized on the

L(e) = 2(1 -Cos€) criterion. Some comparisons of the two computed criteria
indicated that there was no significant difference between the errors and even
less difference in the relative performance of the phase-lock and non-linear

estimate as between the two error criteria.

Several interesting points emerge from a close inspection of the error plots

of Figure 10-1, In the beginning for about the first 70 Points or 7 time constants
the phase-lock and non-linear estimates agree very closely. At about this time
the non-linear loop skips a cycle and at about point 90 has restabilized about

a point one cycle lower. The phase-lock loop is also skipping a cycle at about
this time (in the opposite direction) but takes cousiderably longer to restabilize,
This has been seen to be a typical point of difference between the two loops,
namely, that when the non-linear estimator skips a cycle it tends to restabilize
more rapidly. This is a natural consequence of the adaptive feature inherent

in the non~linear estimator; it has the capability of recogaizing when it is in

- 10,1 -
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an ambiguous' situation and at such times tends to quicklyddisc‘:ard old iﬁfoffnatioﬁ |
and be more rapidly receptive to the new. Recognizing that cycle slips arc going
to be inevitible for any phase estimator at sufficiently low signal/noise ratio, it

is desirable that the transient occur as rapidly as possible in order to minimize
the low frequency content of the resulting step. The high frequency components

will be largely rejected by any subsequent data filter,

After about point 150 the two estimates again assume a very nearly parallel
trajectory, separated by two cycles, The fact that the non-linear estimate _
then setiles around the zero cycle error line can only be regarded as fortuitous.
Over the entire length of record (45 time constants) the phase-lock suffers
three slips and the non-linear two, Although the statistics at this point are

inadequate to prove the point this also appears to be typical relative behaviour.

As apoint of reference it may be noted that for R =1, Viterbi (Ref.6) predicts
mean-time between slips for the phase-lock loop theoretically as 7 time con-
stants while Tausworth (Ref, 23) finds experimentally, 16 time constants,

compared to 13 here,

In order to provide some further insight into the behaviour of the non-linear
estimator around slip times, Figures 10-2 - 10-9 show the transitions in the
shape of the computed a posteriori or conditional probability density J{x)
around the time of first slip from point 70 to point 105. At 70, the density

is a well-behaved unimodal, approximately Gaussian shape. Beginning at
point 80 a secondary mode begins to appear at one cycle below the true value.
By 95 the lower mode has captured most of the mass and the estimate shifts
to this lower value. Eventually, at point 200, Figure 10-10, the mass finally
recoalesces into a single predominant mode. However, as a worst case for
this xun, Figure 10-11 (point 350) shows a case where therc are 4 discernable

modes.

It should be pointed out that the means of resolving cycle ambiguities is by no
means optimized in the present implementation.: What is done in the present
program is simply to enforce maximum phasc continuity by choosing the additive

integral cycles for each esthmate s0 o9 Lo ensure that the differcuce from the

- 10,2 -
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7sigr}irficant bias of about - 0.2 db which is _just_;he expected cﬁect due to the

last previous estimate is lcss than 1/2 cycle. This was motivated parily by

the consideration that our emphasis was on cyclic loss functions (1 - Cose) for
which full cycle errors are irrelevant and partly by the consideration of working
toward estimates which only computed the cyclic density function (on the circle)
in which case the multimodal density information such as Figures 10-2 - 10-11 is
not available to the estimator. The question of optimal usage of the multimodal

density information to resolve cyclic ambiguities is as yet open.

10.2 Monte Carlo Results

The principal simulation results cousist of a series of 40 runs each of length
500 points, all at F =10 (points per PLL time constant) and at R=1.0, .75,
.5, and .25 (linear PLL noise/signal ratio). The results of these individual
runs are given in Tables 10.1 - 10.4 along with the cumulative statistics, The
cumulative results are plotted in Figure 10-12 along with Viterbi's exact
theoretical result for the first-order PL1., The theoretical sampling error

in these runs is + .14 db (see Section 9.2) except fox the case R=1 for
which only 20 ruus were available aud the sampling error is + .18 db, The

PLL results are reasonably close to Viterbi's result but with an appareatly

usec of finite F = 10, see eqtn. 4.17). The cyclic non-linear estimate appears
counsistently some 0.6 to 0,7 db better than the phase-locked loop. In view of
the fact that we can probably regard the linear model as an ideal lower bound
throughout this range of R, this improvement is considered significant; it
reflects only about half as much "excess" error (relative to the linear ideal)

as the phase-locked loop,

- 10.3 -



M=56

R=1.0
F=10.
RUN MEAN-SQUARE MODULO 271 ERROR
CYCLIC PHASE LOCKED

1 1.75 ud’ 2.64 rag’

2 1.14 .95

3 1.02 1.47

4 .93 1.16

5 .84 .93

6 1.75 1.24

7 2.01 2.37

8 .92 1.02

9 1.57 2.53

10 .78 1.17

11 ~99 1.02

12 1.29 1.12

13 1.92 1.59

14 .96 1.20

15 .81 .93

16 2.14 3.19

17 1.46 1.25

18 1.11 1.36

19 1.21 1.26

20 3.20 3.87

RESULTS OF INDTIVIDUAT, RUNS

TABLE 10-1

10.3a



M=56

R=.75
F=10.
RUN MEAN-SQUARE MODULO 27T ERROR
. CYCLIC : PHASE LOCKED
1 l.461ud2 1_35rad2
2 1.09 1.10
3 1.19 1.27
4 .77 .93
5 .62 .84
6 1.22 1.09
7 1.80 2.27
8 1.03 1.28
9 - 1.81 2.30
10 , .83 1.07
11 1.01 1.21
12 .86 .90
13 .89 .83
14 .84 .97
15 .51 .63
16 1.43 1.74
17 1.00 .82
18 .67 .79
19 .94 1.01
20 3.58 3.58
21 .97 1.09
22 3.48 1.91
23 .64 .72
24 .81 .87
25 .90 1.34
26 1.02 .89
27 1.70 2.02
28 .70 .73
29 ‘ .86 1.03
30 1.79 2.02
31 1.05 1.15
32 1.30 1.48
33 1.06 1.63
34 1.04 1.46
35 1.16 1.77
36 .95 .68
37 l.68 1.70
38 .55 1.32
39 .90 .95
40 .70 1.03
TARLE 10--2

RESULYE OF INDIVIDUAL RUNS

10.3b



M=56

R=.50
 — F=10,
RUN MEAN -SQUARE MODULO 27T ERROR
. CYCLIC PHASE LOCKED
1 .90 rad® . 77 rad
2 .76 - 57
3 1.09° 1.02
4 .55 .59
5 .40 .43
6 .84 .92
7 .77 1.72
8 . .49 .56
9 C«59 .59
10 .51 .60
11 .41 .64
12 .52 .53
13 .44 .41
14 .56 .85
15 .30 .47
16 1.09 1.25
17 .47 .51
18 .45 .53
19 .52 .52
20 .78 .75
— 21 .59 .76
122 .70 .70
23 .37 .39
24 .60 .65
= 25 .45 .56
26 .76 .82
27 .93 .98
28 .45 .45
29 .55 .63
30 .93 .97
31 .67 .73
32 .87 .98
33 .56 .64
34 .49 .31
35 .68 , .81
36 .52 .51
37 .94 1.31
38 .46 .51

RESULTS OF INDIVIDUAI RUNS
TABLE 10-3

Ny »
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M=56

p—
TARLE 10~4

RESULTS OF INDIVIDUAL RUNS
10.3d

\ R=.25
- F=10.
RUN MEAN-SQUARE MODULO 27 ERROR
CYCLIC PHASE LOCKED
1 § 40 rad® .50 rad’
2 .25 .24
3 .41 .44
4 .23 24
5 .20 .20
6 .29 .34
7. .32 .30
8 .27 27
9 .27 .26
10 .21 .23
11 21 .24
12 .26 .25
13 .19 .18 :
14 .24 .26
15 .16 .18
16 .39 42
17 .18 .20
o 18 .25 25
~ 19 -26 .28
- 20 L27 26
21 .27 .30
22 .29 -29
) 23 .18 .18
24 .34 .35
25 .25 .27
26 22 22
27 .37 .42
28 .22 22
29 27 .29
30 .36 .37
31 .36 .38
32 .28 .29
33 .25 .28
34 .22 .23
35 .34 .38
36 .16 .15
37 .44 .50
38 .22 .23
39 .32 .33
40 .22 23
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10.3. Significance of the Phase Noise Results

In view of the small db difference between the two it appears necessary to give
some consideration at this point to the overall significance of these results.
What we have computed here is just the phase estimate error or noise, i.e.,
just one-half of the total signal/noise question. Since the maximum possible
phase noise is that of a uniform distribution of 71[2/3 = +5.1 db (rad) and

the phase-lock loop performs reasonably close to the linear ideal the maximum

conceivable improvement in phase noise is limited.

What about signal? In the retrospective light of these results it is clear that
here is where the major difference between various phase estimators must
show up and indeed there is room for very considerable differences in this
respect. It has to be recognized that signal output is also a function of

signal/noise input. This is the phenomenon of signal suppression,

How do we measure the "signal" component of signal/noise output. Since this

is most certainly a noun-linear function of the phase signal (i.e., phase modulation)
input it must be defined on an incremental basis, also it is clearly a function

of frequency. For fixed signal and noise statistics then we can define the "spot
signal suppression factor" (analogously to the spot noise figure) following con~
ventional usage as the ratio of the coherent component of phase signal cut (radians)
at frequency f to the corresponding phase signal input for a small increment of
pha'se modulation at f, This can be measured as shown in Figure 10-13, Here

a small increment, §, of phase modulating signal is introduced at frequehcy fl.
The corresponding coherent component of the output phase estimate is detected
coherently with respect to the input,averaged and normalized to yield the ratio, S,
of the increment of coherent output to input, This signal suppression factor §

is in general less than unity (see Middleton, Ref.24, Ch.19) and only approaches

unity at high input single/noise ratios (small R).

Note that this is quite a general definition of signal suppression, applicable

to any sort of stochastic black box phase estimator.

- 10.4 ~
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It is suggested,though the concept has yet to be fully explored, that an equivalent
measure of the spot signal suppression factor is afforded in the general case

of experiments such as we have run by computing the input spectral density
G
and the input-output cross spectral density
and forming the ratio such as
,GXX*(f)I
s({) = ._.._.,.....(f)_._
GX.X

Unfortunately due to computing difficulties in the last two months of the coutract

there has been no opportunity to test this concept.

It also appears probable that this factor can be related to the information rate
of the systems viewed as channels and in turn to theoretical closed forms for

the output signal /noise ratio for the general non-linear filter,

- 10.5 -
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11. IMPLEMENTATION

Consider the increment equation for the harmonic equations developed in
eq. 8.16). This is in effect a set of differential equations to be satisfied
by the F's.

2
_k _ _gk ES - * _ pu = - ]
& 5~ By Tar [(Fk+l FiFQE® ~F)+(Fy | ~ FiFPE-C) | 11.1)

Consider that we have available the various F, as complex modulation

. k
functions on carrier frequencies elkwt and the measurement in the form
zelwt. Then notice that by multiplying both sides of eq.l%.l) by et

where ® is a carrier frequency high with respect to 932(— , We can transform

eq. 11.1) into

dr, . 2 . . . . . .
k ikwt _ gk ikwe | 1 [ i(k+1)we_ fwe, ikwt, . -t o, -iwt
g © = 5 er +a5r (Fk+le Fle er Wz *e Fle )
il - 1)we_ o, dkwr, Okt jut . iwe :]
+(Fk_le Fle er t)(ze Ple )

11.2)

In overall form this corresponds to the solution for a first-order (siﬁgle pble
pair) bandpass filter at center frequency ®, having bandwidth %l- .
Straightforward implementation of this relation appears as in Figure 11-1.

Only the kth branch is shown completely for ease of presentation, Tracing
through the various signals it can be confirmed that this circuit does indeed

implement eqtn, 11.2),

The current value of I . s assumed stored in the first or computing Band-Pass
Filter on a carrier frequency of kw . This is mixed with Flewt in a double
side-band (suppressed carrier) modulator. The resulting lower and upper
side~bands are,respectively,the terms

Flee
i(k+1)we

Flee

- 11.1 -



(:) Denotes a linear subtractor

Cg) Denctes a mixer

— iuwt iwt
Ze ;{:E;} (z - Fl)e
_ 4
BPE
. _ iwt
~iom wo igwl > Fle
P =5
& e
. L]
* i(k-1)wt
BPF . i(k-L)wt (Fi_FiFyle
x-1° R
— wo=(k—l)w - g —— e
2
; BPF
- i (k-1) ot BEF
eke O(LSB) 1k ' ‘wofkw
F. .~F F.) (Z-r.)e W
b BPF . k-1 "1k 1 ikwt
1 0 = kw o elkwt ' €1
2x S O kE I S . —
= = ga" : * k. ikwt
:L DSB (Fk_'_l-E‘le) (z--Fl e
= MOD. . .
BPF F\ F el(k+l) wt
w = (k+Ll)w 1k . BPF
o] wo=kw
(USB) ,
BPF . ’
_ i(k+1)wt = .
hwo—(k+l)w Fk+le 1
1 2 = — } Par=
5= alkrl) A/
B 2 _ i{k+1)wt :
FrnFafde |
Py [ ]
- .
14 )
® . ‘

FIGURE 11-1

IMPLEMENTATION #1
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These are subtracted (linearly) from the Fk- I and Fk+l terms to give

the terms

. ¥ i(k"l)wt
(Fk-l Fle)c

i(k+1)wt
(Fypr ~ FrFpe
Finally these are mixed with (zl - Cl)elth choosing in both cases the kw
sidebands which are then added to give
ikor - _ e ey _ I, ] ikwt
e = [(F, | - FIF)@-F)+(F | - FF)E*-F e

The fraction '2—15 of this is the driving term which feeds back to the computing

bandpass filter,

This mechanization can be considerably simplified by combining linear operations.

The final two filters are clearly redundant of the first or "computing filter".
Also the first two filtexrs and the double second mullipliers can be seen to be
redundant so that the kth branch reduces to the form shown on Figures 11-2a
and 11-2b, It is to be emphasized that the multipliers or mixers denoted (&) in
these diagrams must all be linear with respect to each of their inputs, and the
carricr must be reasonably well suppressed in the first multiplier. These

requirements can all be met with balanced square-law-type multipliers.

The more or less complete implementation including F0(=l), Fl’ FZ’ and F3

sta'ges are shown in Figure 11-3, The output is directly Fl'

Note that this mechanization may be considered as a series of harmonic phase-

locked loops, each aiding its adjacent neighbors in a particular way as shown.

-11.2 -
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12, CONCLUSIONS

The Bayes sequential non-linear phase estimator has been shown by

. simulation to provide an improved phase estimator relative to the

Phase-Locked Loop.

The improvement has only been measured in terms of noise output

and in these terms the improvement is about 0,6 to 0.7 db relative to
maximum conceivable improvement of 2.2 db. Expressed in another
way, excess noise relative to the ideal is about 1/3 less in db than that

of the phase-locked loop,

A means for measuring the signal suppression factor in hardware
experiments or simulation has been devised but there has not been time
in the present contract to explore this avenue. This is unfortunate be-
cause it is clear that only in this respect could a significant difference
between various phase estimators, i.e., mo;:e than about 2 db possibly

exist (see discussion, Section 10, 3),

The optimization herein was on the basis of a cyclic loss function 2(1 - Cose),

The means for resolving cyclic ambiguities was somewhat arbitrarily

chosen as minimizing the change between successive phase estimates in

" terms of the cyclic ambiguity. The question of optimum resolution of

the cyclic ambiguity for problems such as doppler tracking where the

proper resolution is important, is as yet open.

Several different potential realizations of the optimal non-linear filter
have been developed, Of these the most attractive for real hardware
mechanization is that based on the Fourier series representation of the
cyclic density function (see Section 11), This may be envisioned as a
series of harmonic phase-locked loops, aiding each other in a particular

way as shown.

- 12.1 -
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Within the limitations of the study the overall results are considered
highly encouraging. However, these limitations are significant and more
work along these lines is strongly recommended, In particular, questions

to be answered include

* Include in the simulation means for determination of signal

suppression and comparison with phase~locked loop in this respect,

» Proceed to study of the second-order problem and comparison with

second-order PLL

-« Digital simulation of the two forms (update and increments) of the
Fourier coefficients of the conditional density function and comparison

with present form.

* Derive optimal resolution of cyclic ambiguity for doppler tracking

problem,

* Conditional on the above simulation results, proceed to hardware
implementation and test of the differential Fourier form of the

oprimal non-linear filter,

- 12.2 -



APPENDIX 1

SEQUENTIAL BAYES ESTIMATION

This appendix is written to serve as a very basic introduction to Bayes
sequential estimation or optimal non-linear filtering as used herein. For
this purpose consider a scalar observation and state and first-order

dynamics.

Assume that the state dynamics, i.e., the model for the information process

are known to be of the first-order form

Y O/ TY

where uy is a zero mean, scrially uncorrelated random
deviate having probability density G(u).
The observations are G taken to be some non=-linear function of the state

plus additive measurement noise

z. = hx

i+l 1)t Vi

where Vi is zero mean, serially uncorrelated, independent

of Uy and has probability density N(V)

Let us start an induction process by assuming that we kuow the conditional
probability density p,

1/i-—l(x) of x given all the measurements up through
the (i-l)th. That is

1

X X< X, < i
p(xil Ziys Zioprree z,)dx Prob(x, < x< x, +dx) given Zj 15 Byopseer By

It

"one~step predictor density".

Then given the observation 2 straightforward successive applications of

the rules of conditional probability (Bayes rule) lead to

- Al.l -
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p(xiJ zi" . -)

p(zi) b ')

2

p(Xi Zi: L

p( Zilxi’ Zi-l"") p(xi, Ziyaee )
p( Zs )

p(z._l,...)
Zi_l,...) [Tél—;.—‘—.r]
\Xi_, Zi-l"") p(xi\ zi_l,...)

p(zi\ zi-l"")

= p( z; 1% Zi-l"") p(xi

p( z,

-

Now consider the three terms on the right-hand side
1) p{ z; %5 Zjuqoe .}). Since z; as given by Al,2) is only a function of

X Vi and since \f is independent of v,

V. nye.. WC
i-1? -2’7

have

n

POz |%p5 7 p5ee) = R(7|%)

N(z; - #x,)

1

2) p(xi‘ Zi 15 Zjagse ).  This is available as the a priori density with

which we started

3) p( Zil Zi_1s By_gse .). Since this is not a function of x it may be regarded
simply as a normalization constant, K, required to bring the
total probability back to unity.

Thus

»p(xi‘ Ziy Ty gseee)

K N( z; - f(Xi)) p(xi Zi_15 Zy_nses )

1

"filter density"

Thus the one-step predictor density is updated to the "filter density" by simply
multiplying by the N density function of argument z; - f(Xi)'
To complete the iteration cycle we must then update the filter density to the

prediction density at the next step. To do this note that

ll

P(Xi+l Z; 5 Zi-l"') Ip(xi+l,xi| Zi Zi-l"")dxi

il

5l A v bz .
Jp(“i-ﬁ-—li}‘i’ ¥ i_l,...)p\di] peee) dx

- Al.2 -



but by equation Al.1, X1l
the first term in the integral is thus just the density function G of argument

depends only on X, and v which is independent;

X., 6 .- X. Or
i+1 i

1

PO | Zps Zpopaee) = JOOG - %) B0y 2 7y, ) dX,

This completes the iteration and we are ready to start another cycle in the

same way.

If G and N are Gaussian density functions with zero mean and variances
respectively B and C then, and defining for simplicity
Pl/l(x) = P(X | Zi: Zi"l".‘.)
= conditional density of x based on all measurements

through the - ith

pi/i-l(x) = p(x l Zi.12° -)
= conditional density of x based on all measurements

through the i-lth.

Then the iteration is

given pi/i _ l(x)

(2, - 16
2

p; i) = K exp [' '—T:"—“_“] Piyi -1 &)

-y )
Pipri® = Ky Jexo [" —25 ] Py /v ) dy

These are the principal equations used for the non-linear filter in this report,

The extension to vector observations is relatively simple and in the Gaussian
case results simply in the substitution of the appropriate quadratic form in

the observational residuals in the argument of the N density function.

- Al.3 -
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APPENDIX 2

The Journal of the Astronzutical Sciznces Vol XV, No. 2, pp. £0-04, Sopt-Oct,, 1839

R. 8. Bucy?

1.0 Imirsduction

Even though the theory of optimal non-linear filtering is theoretically fairly well
understood today (see [1] fora description of the theory and relevant references), the
attendent problein of synthesis of nondinear filters is almost untouchad. Since one of
the unsettling features of the non-incar theory is an almost total non-existence of

-examples, it is clear that the synthiesis problem is not only praciically relevent, but also

theorecticelly relevant for the problem of asymiptotic behavior. The forthcoming thesis
of Lo (see [3]) will provide some closed form resolutions for non-Hinsar filters,
however.

In this pzper, we will describe our resuits on the synthesis of a one-dimension
discrete tine, non-linear filters. In the discrete case, it has been pointed out by many

dnvestigators in contro! ([2], [3] and {4]), non-linear filtering basically consists of a

scquencial application of Dayes’ rule. Of course, this idea is well known in the
statistical literature (sse in particular [6] ). We have chosen the discrete time case in
order to avoid the well-known dilernma arising in the sirmulation of a diffusion procass
and the refevant stochusiic integrals. The mechanics of the realization we describe are
not limited to the one-dimensionzl situation, but for reasons of simplicity of
description in the section dealing with the timz-sharing basic program and numerical
results, we will confine oursalves to this cne-dimensional case. >,

YPhis rescerch veas supported in part by the United Stutes Alr Foree Qffice of Acrospoce
Reszarch, Applicd Mathematics Division, under Grants No. AF-AFO3R 1244 67A and AF-AFOSR
1244—67R. Manuscript sulunitiad June 1869,

2Univ::rsily of Southern Colifornia, Los Angeoles, Californiz and Electrac Inc., Anahzim,
Californis. )
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The papzr will be Civided into three paris; the first being a description of the signal
and noisz processes and the sensor, the sccond a reviesr of the sequeniial forravlae for
the conditional distributions of the signal given the observations derived via Dayes’
ruls, a deseription of our synthesis method and a Basic Program as well as a

comparison of our results to the performance of a linearized filter.
2.0 Modeling

In general, bold-face, lower-case latin Jetters denote veetors, while lower-case, latin

letters denote scalars. The signal process §x is a discrete time index sct of

"Mn=1,...m
n-vector valued random variables and satisfics

Xn

X0

f

dlx, )+ olx, _Ju _
n-1 n-1"n-1 (1~0)

c

I

with ¢ a function from R” to R™ and o a function from E” te 1 x r matrices, with
o’o invertible.

The §toclla31ic process %”"%n:l m
distributed r-vector valued tandom variables with density g (n). Vhile ¢ is an n-vector
valued random variable independent of the u, processes and having density /{(c). Now
the observation process ;Zilgn 1 m. is an s-vector valued process related to the
signal process as ’

is a set of independent and identically

z, = h(x) + v, (1.1)

with £ a function from R™ io R® and {vn} a set of independent and identically
distributed s-vector valued variables, each having density n (v} and independent of ¢ and
they,.

The filtering problem then consists of the determination of

'Jnlt(y)dy = Plx, edylz, ...,z (1.2)

where P is the conditional distribution of the n the signal given the first { obser-
vations. We remark for future use that x, is a stationary Markov process and define
its transition density as

plrox,ydy = Plx,,; €dy|x; = % (13)
3.0 Seguential Relations

Our purposz in thiz section will be to derive szquential relations satisfied by the
vatious Jn[t(y) . Qur first resuit is:

Theorem I:J, |n (y) is uniquely deteiviined by the difference equation
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Ny

- (o, - BN | gatily — 6Ny 0 1)
K(n) ? j .{ Y n-1fn-1

1
Jolo @ = - nlzg ~ 1Y 22)

where

K* = p(ZO) K(n) = P(Znizn-l""’zl})

and

Plzy € dl) = p(Ddl
. Plz e dk klz z, .- 1,,..,20) = p(!{lznﬂl,...,zo)(ﬂc.

Proof. Using the relevant densitics, we find

JOIO(y)dy = P(:-:O € dylzo) = .
p(ZO)

- L atg - ki Iy dy

plzg)

using Bayes’ rule.

Jnln(y)dy = Plx, edylz,, ..., 29 =

82

Now

P(x, edy, 2z, ..., 7)

plz,, ..., 20)

= -_"P(:\  €dy, 7]z
K

P(}\ € d)’, " n__1E7n 1y o= 70)(1\ -1
I\(h

__—ﬂ(l -h() (0(\) {y —qb().)) n-1fn- 1 (dx | dy
K(n}
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using Bayes” rule and the foet thatv, vy yand 2 ..., 75 are independent.

Corolicry forr > 0

Jn”[n(y) = /'-n-/p(r,x,y)Jnln(x)dx 23)

. |
() = Ny - ) n (7, - G el
Iuiafn by K(n)j[” /g((a(@)@ @ ))n (= BO) dyjpr (0

(2.4)

Jn-r[n(y)

C(n r) n r‘n r()) [ / nr(Jrz’ SRR P | y)d}n’ " d)n ril

(25)

H

| AN e S § BN 1P 1S WA CACPRY TR 1)

jmn-rtl

Cn,n

p(zn, ey Tp [ zD) .

Froof. Now

mrln(y) hf./p(xn”, Xy |2y oo s 2pddx,
= fn~fp(xn+r|x,), Z, ..o ) pla,lz,, ..., 29)dx,
=[-IL- /p(r,x,y)JnIn(x)dx
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by the Merkov property. Noting that p(1;x,3 = glo™(x) (y — & (x)) using Eqs.
(2.1) and (2.3), (2.4} ic then a conseguence.
In order to eslablish Eq. (2.5), note that

1 PO, =Yz xg)
Cinn piz,

- rln(y) = ple = ylzg a ) =
—r""""‘O)

Zpep o P Xp = Y oo s Xpopy1 = yn—rﬂ)dyn’ st dyn—l
" Cln) < Pz, ..., 2 .
1 . .

= T Jn—r|n‘r(y) plzpxi=y-n-r+1<i<n 1xn—r = Yn—r)dyn* LR d)'ml

Cin,n

(v

ﬂ rln r
hhhhh L. dy,...,dy

C(n Y / f nr-’n n-r+l *

4.0 Syntiwesis and Realization

In this scction, we will assume {x,} and {2 1 are sealar valued, further we will
define ml(}) = Jn'l[n
J,, (3) be conveniently stored by the digital computer. For the purposes of this section,

{v). The first question that arises is how can the function

a probability density will be represented sufficiznlly accurately by a pair (J,f) wihere
Jisa 2M 4 1 vector and f is 2 map from the set{1,2,...,2M + 1 tto the reals. The
components of J can be considered as non-negative masses, while f(#) is the point in
R1 which carries the ith mass, the value of this mass being the ith coordinate of J.

For illustrative purposes, we will specialize to a particular problem, the obvious
modifications for any other particular problem being left to the reader, given by

X, = axﬁ~1 + Uy

Xp = ¢C (.1
3

z, = (xn) + U,

specizlizing Eqs. (1.0) and (1.1). The solution of the filtering problcnﬁhen hinges on

determination of the sct of functions {Jn(y) }n:I ... or replacing these probability

densitics by mass distributions{J”, f,, () } for purposes of synthesis; we find
2M+1

Joigl) ~ Z g (D — af (M lz, - {260 ()

A (32)

do i) ~ Hfyli»
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in view of Eq. (2.4) where of course ~ denotes proportionality and

2M+1
ZJH(i) -1

j=1

for all n. Tt remains only to determine £ (7), the griding to determine the filter, and we
found the following an elfective choice:
(=]

8o,
fml(i) = g, - 80” + — (= 1) n>0
: M (3.3)
fold = f,(D
wheré
2M+1
P W ATERT
i=1
2Ml (3'4)
0? - Z ([0 — p* d (0.
i=1 '

The philosophy is to center the ath grid at the previous estimate with a mesh
proportional to the standard deviation and the 16 o, width of the grid was found to be
necessary in order that true signal did not escaps the moving giid, for when the trua
signal does not lic within the grid, the iteration scheme becomes very inaccurate.

To sce the power of the above schewe, when,
the lincar filter is solved this way with M = 7, the
sequonce g, an2 agree with the solutions of the
linear filter equations to 6 or more places.

Now Fig. 1 depicts the flow chart of the
synthiesis of the optimal filter and Fig. 2 the actual
basic program for this synthesis when [ gand y are
Gaussian with means 0 and variances A, B, C

respectively. In Figs. 3,4, 5 actua] non-lincar filter

outputs are given.

5.0 Lincuarized Fillers

Again consider the model (3.1)
FIG. 1 X = axn -1 +- ll” -1

4
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»

<RUN

INPUT A SET OF VALULS A,B,C,I4L,M,GD

2-1,1,1,100,28,0,5,3

>

-0.626713664
0.174233842
3.107302746

1.0397463

E R - -

0424397218

-0.53420307

b

b

-1.51678737

>

"-0.375670138

beS

-0.860187797

-0.953299574

~

-1.252639799

-

«3.579140751

>

-0.793037782

>

0.355264521

e

-0.137670378

>

10.994986456

b

-0.874632224

>

-0.994831115
0.243522124

0.493804941

b

-0.133336886

>

-1.163363547

>

-1.212483872

i

-1.52216501¢6

~

-0.75219402

Y2

-7.2100567711-03

Y2
0.281603879
Y2
0.101557808
Y2
1.488285803
Y2
0.248842188
Y2
0.050566494
Y2
-0.028555029
Y2
-0.728327511
Y2
-0.215462635
Y2
-0.177153465
Y2
-0.671950375
Y2
-0.574517959
Y2
-1.779880267
Y2
-0.3169304636
Y2
0.048319704
Y2 :
~ 0.1341239658
Y2
0.279280452
Y2
~0.25511048
Y2
-0.057927168
Y2
0.176795593
Y2
0.714268931
Y2
0.188221642
Y2
-0.5946565573
Y2
-0.5423488
Y2
-0.563766509

-A2.8~

53
1.082460276
s2
1.098365541
§2
1.084383581
52
1.060002777
52
1.062254019

82
1.082736927
82
1.08446359
§2
1.011782685
82
1.078218119
52
1.089599355
52
1.02158232
52
1.039936074
82
0.959999539
52
1.055037501
52
1.083314383
$2
1.090361475
s2
1.094231554
$2
1.106106724
$2
1.083491353
$2
1.096072635
S2
1.013096844
$2
1.077896102
$2
1.050132145
$2
1.049336471
82
1.046580992

FIG. 3
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Z
-0.061265082
Z

1729668579
Z

0.450G810352
z :
29.83663919
z

0.21460954
Z

0.0920827
YA
-0.300751202
Z
-3.782497717
Z
0.752476644
Z
-1.034709837
Z
-3.291268051
z .
-2.557312925
7 . .
46.94926414
YA

-0.48116593
Z

0.796062291
Z

0.9480253548
Z

1.613952893
Z

-1.82025243
Z
-0.152925109
Z

1.283479301
Z .

3.625369919
Z

0.5844227¢2
A
-2.97456146%
Z
-2.435385054
Z
-2.534544307

m=1.14

" m=1.07

87
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>RUN
INPUT A ST OF VALUES A B.CNMG,D
?1,1,16,100,28,0.5,3

X
-0.62671366<
X

01742333842
X

3.107302746
X

1.0397463
X

0424397218
X
-0.53420807
X
-1.51678757
X
-0.375670138
X
-0.860187797
X
-0.953289574

X
-1.252639759
X
-3.575140751
X
-0.793037782
X

-0.355264521
X (?bH

-0.137670378

X
0.994986456
X
-0.874632224
X
-0.904831115

0.243522124
X

0.493204941
X
-0.1333306886
X
-1.163363547

Y2

-7.66634109E-03

Y2
0.362627213
Y2
0.158907622
Y2
1.534442006
Y2
0.320534672
Y2
0.092659349
Y2

-1.03765016E-03

Y2
-0.22824303%
Y2
-0.163992444
Y2

0.12768512
Y2
0.718656156
Y2
-0.400765397
Y2
-1.835628393
Y2
0.461137472
Y2
-0.019237882
Y2
0.13155780Y
Y2
0.175381465
Y2
0.167527736
Y2
0.028262743
Y2
0.211808955
Y2
1.00044184

Y2

0.351535002

82
1.143442054
82
1.199835733
52
1.154128465
S2
1.00564756%1
82
1.098283136
S2
1.146040824
52
1.15116427
S2
1.18164216
52
1.1596452%4
s2
1.156771378
S2
1.151797643
s2
1.151018841
S2

1.005485025

82
1.08737794
s2
1.1512430887
s2
1.165645072
S2
1.165404846
S2
1.181521438
52
1,155877354
52

_ 1177252093
© 82

1.045880587
52
1.127273231

199489387

NbN

6.00194633

[\

1.443467113

Ny N
[Xa)
&
~J
(=]
(]
L)
[#2]
(84
[

-1.751832833

N

0.125844491
621416614

41585062

-2.2640132

1.8958065942

NCIUN N
N
(%)
B
N
D
ey
I
[=¢)
w

-3.836922285

AN

9.3268649¢6

443147448

Nb'\l

2.614324278
Z

3.00356201
Z

2.973848763

z
309535766

Z : :
1.645329324

Z N
4.05911395

Z

11.203905

Z
1.853232947

X Y2 S2 Z
-1.212483872 0.23467883 1.208706668 -6.001854186
X Y2 52 Z
-1.522163016 -0.26273182DH 1.17402907% -3.847118269
X Y2 §2 Z -
-0.75219402 -0.085167227 1.15103151 -0.385935127
>RUN

FiG. 4
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b

INPUT A SET GF VALUES ABCNNGD
?1,1,100,25,28,0.5,3

X
-0.626713654
X

0.174233842
X
3.10730274¢6
X

1.0397463
X

0424397218
X
-0.53420507
X

-1.51678737
X
-0.375670138
X
-0.860187757
X

-0.953289574
X )
-1.25263972%

X
-3.579140751
X
-0.793037782
X
-0.355264521
X

-0.137670378
X

0.994586456
X
-0.874632224
X
-0.994831115
X

0.243522124
X

0.493%04941
X
-0.133335886
X
-1.163363547

X
-1.212483872
X
-1.52216501¢
X
-1.522165016
X

-1.522165016

Y2

-5.71231531E-03

Y2
0.20252230G
Y2
0.169543509
Y2
0.808079262
Y2
0.187388014
Y2
0.076921313
Y2
0.01134297
Y2
-0.0707056%6
Y2
-0.111720796
Y2
-0.026915009
Y2
-0.585853101
Y2
-0.335943353
Y2
-1.813154725
Y2
-0.65G741007
Y2
-0.165856433
Y2
0.043825423
Y2
0103471047
Y2
0.115170595
Y2
0.045280224
Y2
0.182155163
Y2
1.242588208
Y2
0.548213554
Y2
0.030684143
Y2
0.08633278

-0.06633278

~-A2.10-
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82
1207034502
)
1326693338
s2
1.2522303259
S2
1.386524369
s2
1.239243125
52
1.2363536
82
1.237083048
)
1.2454563477
S2
1.249861121
s2
1.244129366
$2
1.39365123
s2
1.267020386
52 )
1.018603823
§2
1.138083593
S2
1.209426125
52
1.247771711
52
1.250737015
s2
1.267160983
§2
1248425042
S2

1.277583089

52

1.240402613

52
1.210012625
82
1.253365976
S2
1.254152365
s

2
1.254152365
§2
1.2541-

Z
0.636580369
YA
19.51207482
A
4.553206893
Z

$28.34808124

Z
<1.970270567
Z
0.232671896
Z
-1.635445684
Z
-6.418588354
z
-7.047608086
z
4.616843403
Z
-25.11586892
z
-7.883402385
z
-56.64549891
Z
<0.322922453
Zz
8.364173538

~

9.503739045

N

7274217094

-12.18122684

~N

~N

7.331805147

b

12.80:81862

5.16934135

NuN

5.865562956
Z
~15.57459432
Z

-8.311410473
z
-8.311410573
Z



pE——

Y I "4

=
<

1l

3]

z, = xn3 + U, . .
Defining H, as 3.;”2 it foliows that a linearized filter for Eqs. (4.1) is given by
" - =3
X, = @X, |+ Kn_l(zn_l - X5 )
X, =1 .
0 ) . (4.2)
” h) -
K, = aP H (HP, + ()
2 -1
P ., = @P,CULZP, + O 4 B.

Noting that :fn =0 is a stable cquilibrium for the estimate, we toke 550 =1 and
simulate the behavior of Egs. (4.2) on the smne observation sequence as the non-inear
filter runs (see Figs. 6, 7, and & which should be 'compared with Figs. 3,4, and 5
respectively). Notice that the nondinear filter is markedly better and in particular the
lincarized esiiinate when once small stays small, so that its long-term belhavior is quite
poor. Figurc 9 is the time-sharing program for the synthesis of the linearized filter.

6.0 Remarks On the Data

Now Figs. 3 through 5 give the conditional error standard deviations of the onc-step
predictor. Hence, the filtering errer is ((82)2 - 114

4 (522 —1
s -
P e e e i et e e o e 2 L) P v vren e e § = O FILTER
1+ - ds
) T
ol \\NON~LINEAH FILTER
SR Y, S O
1 10 100 NOISE POWER

We point out that somewhere between a signal-to-noise level of .1 to 0] the data has
very little informotion useful for filtering. Notice from Figs. 6 through 8, the
linearized filter differs little from the filter

) = 0.

It may be of interest to the reeder to discuss sume prelindnary resulls concerning
the implimentation of higher order examples. In joint vvork with Dr. Roger Geesey and
Dr. Kenneth Senne, we have found that in the two dimznsiona! case, computing tinee

S0  The Joumns! of the Astionsuiical Scieices
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AP 4

>RUN

INFUT A SET GF VALUES ABCNGD

71,1,1,2505,3

X
-0.62671366%
X
0.174233842
X
3.107302746
X
1.03974¢63
X
0.424297213
X
-0.53420807
X
-1.51678737
X
-0.375670138
X
-0.8601§77927
X
-0.953289574
X
-1.252639799
X
-3.579140751
X
-0.793037782
X
-0.355264521
X
-0.137670378
X
0.994936456
X
-0.874632224
X
-0.954831115
X
0.243522124
X
0.493904941
X
-0.133336885
X

X2
0.340309638
X2
0.43681852
X2
0.313897009
X2
5.005466813
X2
1.670032142
x2
J.566021129
X2
0.16230185
X.
LMOE6862446

0254320184
X2

-0.033203353

X2

-0.023840069
X2

-0.014825045

X2
-0.028046398
X2
-0.014780099
X2
-71.04225066E-03
X2
-3.42709413E-03
X2
-1.£7563542E-03
X2
348039586504
X2 0
4.24239747E-04
X2
-2.11654274E-04
X2
-1.05502322E-04

-A2.12-

FIG. ¢
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P2

1.025

P2
1.22788809
P2
1.217746038
P2 . '
1.27515915
P2
1.000044244
P2
1.003520779
P2
1.130189265
P2
1.280564136
P2
1.319931126
P2
1.329948£555
2)
1.332482327
P2 -
1.333119291
P2
1.33327963
P2
1.333317433
P

P2
P2
P

P2

P2

P2

1.333329167
1.333332282
1.33333307

1.333333267
1.333333317
1.333333329

1.3333333332

3



> RUN

INPUT A SET OF VALUES AB,CN,G,D

71,1,18,25053

X
-0.626713664
X
0.174233542
X
3.107302746

X
1.0397453
X

0.42439721%
X
-0.53420807
X
-1.51678737
X
-0.375670138
X
-0.850187797
it
-0.953289574
X
-1.252639799
X
-3.579140751
X
-0.793037782
X
-0.355264521
X
-0.137670378
X
0.994986456
X
-0.874632224
X
-0.994831115
X
0.243522124
b
0.493504941
X
-0.133336886
X
-1.163363547
X
-1.212483872
X
-1.522165016

X2
0405303469
X2

036372004

X2
0.216477319
X2

0.379427161
X2
0.139187005
X2
0.0700670%/1
X2
0.034424199
X2
0.016166016
X2

0.00796464

X2
3.95826858E-03
X2
1.95239036F-03
X2
9.73270055L-04
X2
4.77290007E-04
X2
238624813501
X2
1.1934218E-04
X2

5.967%64355E-05

X2
2.98419411E-05
X2
1.49202031:-05
X2
7.46017474F-05
X2
3.730132555-06
X2
1.8650974CE-06
X2
9.32550027L-07
X2 :
466273965507
X2
233136815107

92  The Journal of the Asironctiical Sceaces

P2
1.131578%47
P2
1.275328163
P2
1.312553514
P2
1.327289313
P2
1.323805439
P2
1.33080341358
P2
1.332691256
P2
1.333172253
P2
1.333293036
P2

P2
P2
P2
P2
P2

P2

P2

P2

P2

P2

P2

P2

P2

P2

1.333323257

1.333330814 .

1.333332704
1.333333176
1.333333294
1.333333323
1.333333231
1.333333333
1.333333333
1.333333333
1.333333333
1.333333333
1.333333333
1.333333333

1.333333333
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INFUT A SET OF VALUES ABCHN,G,]

71,1,100,25,05.3

X
0.626713664
X
0.174233542
X
3.10730274¢
X

1.0397463

X
0.424397218
X
-0.53420807
X
-1.51678737
X
-0.375670138
X
-0.860187797
X :
-0.953289574
X
-1.252639799
X
-3.579140751
X .
-0.793037782
X
-0.355264521

X

-0.137670378
X
0.994986456
X
-0.874632224
X
-0.994831115
X
0.243522124
X
0493904941
X
-0.133336835

X2
0.477478252
X2
0.319546147
X2
0.168968668
X2
0100577922
X2 ‘
0.043578501
X2
0.024350268
X2
0.012155741
X2

6.05850224E-03

X2
3.02427675E-03
X2
1.51129348E-03
X2
7.54499441E-04
X2
3.771599650-04
X2
1.884182581-04
X2
9.42089005F-05
X2
4.71059345E-05
X2
2.3553389E-05
X2
1.17767752E-05
X2
5.88835381E-06
X2
2.94418199E-05
X2
1.472093225E-05
X2
7.36043132E-07

~A2.14~

P2
1.229357798
r2
1.30558208
P2
1.325994632
P2
1.331466414
P2
1.332862522
P2
1.333215406
P2
1.333303837
P2

P2

P2

P2

P2

P2

P2

- P2

P2

P2

P2

P2

P2

P2

1.333325858

1.33333149

1.333332872

1.333333218

1.333333305

1.333333326

1.333333332

1333333333

1.333333333

1.333333333

1.333333333

1.333333333

1.333333333

1.333323333
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10 PRINT “iNTUT A SET OF VALUES AR,C.NG,D”
15 INPUT ABCNGD :

37  Pl=A

— 38 XI=0

100 X=SQR(AY*SQR(2FLOG(RNE1)))*COR(2*PI*RND(-1))
109 w=1 ,

110 V=80R(C)*SQR(-2 LOG(RND{1INFCOS(2* PI* RED{-1))
120 U=SQRBYSQI(-2*LOGIRNDCIN*STH(Z*PI*RND(-1))
124 Z=XiD+V :

130 X=G*X+U

235 GO TO 300

245 PRINT “X, VA2, “P2”

247 PRINT X, X2,F2

251 W=Vl

: 260 IF W <N THEN 110

! 300 M=3%X1*X]

! 302 X25GHFX1+P13GH M (PLEMA MO (Z-M/3%X1)

; . , 310 P2=G*GHP1I*C/QI*PL*LHOD

E 320 X1=X2

321 Pl=I2

| 130 GO TO 245

. ' FIG. 9

varies as M4 if the analog of the convoluticn equation (3.2} is performed over the
entire grid. However, by surmming the convolution over on the interior of a moving
ellipsc of points, with center and axis determined by a subopti'mal filter, we huve\
found significant time reductions without loss of accuracy. For teal time synthesis of
higher order examples it seems that parallel processing is the only effective technigue,
althovgh Gauss-Hiermiite integration is being considered.

- '
Acknovledgeients
‘ My graduvate students, James Lo, Alex Liang, and David Rappaport were quite
. helpful in writing and debugsing the various programs. Discussions with Dr. Jack
! . . - .
- : Mallinckrodt were quite helpful. Tharks are also due to AFOSR for providing a
E time-share remote terminal without which none of the results presented here could
; have been obtained.
|
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APPENDIX 3
MONTE CARLO STMULATION PROGRAMS

Two Monte Carlo simulation programs, P13 and D14, were run for

statistical data. Program D13 simulates the conditional mean

non-linear estimator and the cyclic non-linear estimator on the

line, while D14 simulates the cyclic phase non-linear estimator

on the circle. Program D13 together with the corresponding flow

chart, are shown in the following, where:

PP
R7
AT

F9

X
Y2

zZ8

X2’

SA

CA

6.28318530

Parameter R, variance of the ideal estimate (Wiener)
Floating Point Number of I

Parameter F, filtering time constant in sample interval

units

‘Signal Phase .

Conditional Mean Non-~Linear Estimate

Phase Lock Estimate»

Cyclic Phase Non-Linear Estimate

Cos Component of the Cyclic Phase Estimate

Sin Component of the Cyclic Phase Estimate

E(I) Measurement Density Function

R(I) Random Variates, uniformly distributed from 0 to 1.

AJ(I)Probability Density Function

00 (I)01d Grid Point Value

vl

v2

Independent Random Normal Variate vy

Independent Rundem Nomal Variate V2

~-A3.1-



il ;

z1

z2

YE2
XE2

ZE8

sM2
SM3

XXAl

XXA2

Independent Random Normal Variate U
Cbhservation Zl

Observation 22

Phase Error, conditional mean non-linear estimate es, cycles

Phase Error, cyclic phase non-linear estimate €ar cycles
Phase Error, phase lock estimate, ep, cycles

Variance of U

Variance of V1 or V2

Integrator Gain K

Mean of the Cyclic Estimate Error, Ee
Mean of the Phase-Lock Errxor, Eé
Mean of the Non-Linear Estimate Error, Eﬁ

Discrete Time Index
Normalization Factor
Number of Grid Points from -T +to T, MM=2%M+1

Number of Sampling Points per Trial

 Number of Trials per Experiment

Modulo 217 Erxror, Conditional Mean Non-Linear Estimate,
M(e

ey
Modulo 2w Error, Cyclic Phase Non—-Linear Estimate, M(ec)
Module 27 Error, Phase Lock Estimate, M(ep)

Mean Sqguare Error, Conditional Mean Non-Linear Estimate,

(e )

Mean Square Error, Cyclic Phase Non-Linear Estimate,

2
(ec)

-A3,2~



. 2
XXA3 - Mean Square Error, Phase Lock Estimate, (ep)

Xl Mean Square Modulo 2w Error, Conditional Mean Non-Linear
Estimate, (M(e_)) 2
XXM2 Mean Square Modulo 2w Error, Cyclic Phase Non-Linear
Estimate, (M(ec))2
XXM3 Mean Square Modulo 2m Error, Phase Lock Estimate,
N2
(M(ep))

-

Input data are read in and printed out when program starts. Initial
conditions for each run, which includes the initial values for esti-
mates, cumulative statistics, probability density and density grid

are set at this point.

Gaussian random variates are generated using Vector algorithm:

= (-2 1n U )% 2
Xl = (- n Uy Cos 2m U2
X, = (-2 1In U )% i 21T U
5 = (- n U, sin Iy

Where Ul-and U2 are independent random variables having a rectangu-
lar density function on the interval (0, 1). Therefore, -2 1ln U,
consequently, r2 = Xl2 + X22, has a Chi-squared distribution with two
degrees of freedom, which implies that X,, X, are independent normal

1" 72
randeom variates with zerc mean and unit variance (Ref. 19, p. 953).
In D13, uniformly distributed variables are generated using IBM system

360 subroutine RANDU.

Conditional mean non-linear, cyclic phase non-linear and phase-lock
estimates are computed and data are printed out for each discrete
time point. The stmt, and Eg, nunhers appearing in the f£low chart

are the statement and eguation numbers used in the program and the text.

~A3,3=~



A

FLOY CHEART (R13)

N\ Rp=an TUeTm DATR
_Ran UTIT DA

| LKI}EQ,(fﬂiﬂ@f}f{l?I}fﬁﬂiATI(ﬁ? (zvr, 9) |
Grmi [ul_s_)
Initialization for each Run (Stmt. 10-36)
for:
Estimates

Cumulative Statistics
Probability Pensity Grid

Prgbgbiiity Density

e 1
Cenerate Gaussian Fandom
Variates by Vector Algorithm
{(Stwt., 1460-120)

Conditional Mean Nonlinear Estimate &
Cyclic FKonlinear Estimate
* Compute Measurement Density
Function (Stmt. 140-670)
Integration (Stmt. 180-186, Eqg.6.1)
* Normalization (Stmt., 175-225, Eg. 6.1
* Mew Density Function (Stmt. 230)

o

ey

Phase Lock Estimate
[(5tmt.1060, Eq.5.17)

Gather Cumulative Statistics
up to the Wth Sampling Point
(Stmt, 248-941)

(Stmt. 260) ' ‘

(?ﬁIxT POTIT DATA

Yes
Mo
Print Overall Tu
Statistics Stmt129)
Yes Retum

for Yext Run

(Stmt. 1231)




PROGRAM D13

- J..UEJ Ll

oo Wio WL, W)

e e A e et s

DIMTINGSION AJ(500) sAL{S09)sHIS00) »QO(300) 551500 ), AMLIS00),71(R)

3 e
=TT g =TT T

7?7 RIAD(S547)

G NMMN=0

s et g < i

FETUNENFUN

AV ZRT 4FS o Ny NOUN

" MONTE CARLO INTTIALIZATION

A-FIRMATI3T10v04215) -

TX=314157

Tt NGE=D

11 A=P7

—P-t=hA

X1=0

“Ze=0 o
C =R 7%F

Br=R2/=

Ta=0,

G1=C0 -~ —

G2=0

G3=0
GI'“13:O¢

A-T-7-=145-De
AN=N

G=1,

no=r

e ——-

T4E=0

J 4 =10
AR e r

T3=0

F2=0
W2AITC{6,60) M
RoIRMAT L3y 143

WRITZ (6.62) 27

62 F-ORMATALH AP m g 6 -3

WRITE{6,54) F3

Hh—TRAEMATAAA- Gy F T2 )

WRTTZ{6456) B

o0

FHRMATFE34-8 = ¢S 70737}

YITTE(G.58) C

=y
NS

|
|
|
!
1
|
!
]
~J

LR MAF- (- By T P30}

INITIALIZATION FCR EACH RUN

C

WRITE(6,2)

2—Ff AT Y b
1 NLMSE Cydse PLMSC

n
R
!

3]
M T
(I

@

N C e e i ar v e o e+ i e

Wompon

ud

O

il
>

-

h < =
it
0
i

Ll

=SORT(A)

3D MM =PeMi]

AT

P G R
A{T )=t
TAETYIGL

T 7H 1=

-

Fod s

©

LT 0o Vo TENCE SO S0 BT L

IR T I

W ASTTIT OB A PRI -, DAL |4

b
1

Set up initial probability
density.



rroyrait D13

Page 2

75TAIIT I EAILL ) AT

a1 w=1. RANDOM VARIATE GENERATION
T TEECSTO T AIOTIE I T
1470 1YY= X2E3333
I (IY) ISl b,Ye6 T

15 IY=1Y+2147423647+1
IG Y=U=TY
YEL=YSLY, 46566135 ~C
—TXETY
149¢ BNI(T)=YFL
IS TS (W=20) TSI 1Ty T T e
169 X=SORTIA)%SORT(=-2, *ALCG{RN{1)}) *COS(PP=FN{2})
T T O VIESAQR TS ) ¥ SaRT =2 TR AL IRNII 1) T ECOSTPRERNT AT
VZ=SORT(C)HSCRT {2, *ALOG [RN(5) ) ) =COS (PP EEN(6) )

1 ST TS T SOR TU=2 THATCE RN ) ) ) F S TN (OP RN e —
130 x=G¥X+U
e ZI=CUSUX}+ VT -

22=SIN(Xx)+vVv2

Y O SO 5 S
c0==21
¥ =0
€1=0
L e B L
QES=B,REDIAM

17O B 70 T =1 7Ma

NON-LINEAR DENSITY COMPUTATION

Al=1
— —— I =E S G It AT =T
- 15¢ YE=Y1+4AJ{1)%20(1)
TS E - ST=ST+ e FIRA Y (T =aa ()
Ja=oo(1)/Pe .
B - W& fr-2re A - - e
6356 E(1)=PP={CI(1)/PP-AG

=i

3P A= TS E (24 22 = S IN S - 1) )y w52 Y7t 2 r e

E3C TT(EA(1) -5, ) GE7 36674662

CET ST F=E X2 t=T 0T} Measurement Density Function
GO TO &7C

CESETT =0

67C CONTINU=

O S T= SORTAS =Y Y}
Qs=Yl=-%, 51

CE=OTHSTAAY

DO lod 1T =1 484

T 20—
154 ALLT =S tAs%(ATI~1,.)
TES—AH=E —
Y2=3
€75 Fasal7xS1RT(R) /706 )
- A T=AS /4"'.'"” TT e T T -
17 4=-AT] E77,677,175
N A A A Sty S - e e e

e o BTN RIS BT S8 BRRR

Integration
[ —L BT i o T R e

-A3.6-



Programb.Ls
Page 3

- g AT —
I5(J1-1) 723,723,724
— 723 —r=1
RI— 724 J2=A1+74
e TR G G Rt P A0 PR G e R &
726 J2=4M
=P 1300 12611 =01y J2 -
COO=(ALIL}~GxQGQIITI))*%2/ (2 ,.%1)
——i— IFAeQa—50 1383 v 1334137
* 167 R=C
S e B —
183 R=EXP(~Q0Q}
e RS EAHAECE ) m R A J(IT )
196 COMIINUT
e O T ) =AM
AK=AK+H(I)
-—1 Se=S2+AC (T Frat (1 =H{ )
P15 Y2=¥24AL L) A (L) Renormalization
P 2 0 2 Y 2 /AR . -~
S2=C2/AK=-(Y2¥x2)
2253 50 230-1=1 MM
HET)=HL1) 7AK __New Conrditional Phase Density

23—t bt 1) . ) - S e

e e e e =

o e ~ CYCLIC NON-LINEAR ESTIMATE

CazQ
B -232 -5}y MM~ : -
SA=SA+AJ{I}=COSTALI(T))
—— g 2 B2 CASCAAA YL T ST A L (- ))
233 TA=ATANZ(CA,S5A)
S GG YRS TA—= T e - - e
1IF{TH~-3.1415%27) 505,505,310
St FhA=TA—62 831353 _ —
- GD TO 500
G TG 141 53 2T 51 5 5P 5R Y
515 TA=TA+5,2831£53
~——GH7 T3 53¢ T : e e
525 CONTINUS
53 0—¥2=TA - —
230 wl1=0C
YLt OBt 5527
YC2=YT+3,1415927
— {'\ aJ ——2—3.’.‘: - IAA;: -1—- ¥ A1 a,'i —— B — r——r ——— e
1= (AL{I) ,LT, YOl L,CR, AL(I) .GT. YJX2) GQC TQ 238
23w i=wi+ad{1) e

e, 233 CONTINUFE o e, o
e e F O B G A S N ek om 22 VR S LN (28 kv s s e A T PHASETTOCK

2379427 (1,+59) o
e - T~ GATHER CUMULATIVE STATISTICS
25C I~ (Sw-4,) 253,257,257
B T Bl B e b ) B B B e I T T

TRA=Y 34 {{X— o2} *+2)

—-—— B e B R B T Lk T SO SR

T

~-A3,7-



Program D13
Page 4

2zG 2+ X=28

GI=G3IFX=Y2

255 Sl =x-¥2
EU2EXEX2 T
SU3=X-23

CI O TF (SMTH+ 3, TSI CZ7) 808" T035yw03

05 SMI=SnmI+DP

GOTTOOID
17 (SM1=3,1415327) 20,520,509

ST =51 =PP T e
GOy TO 293

= {SVM2F3 71 TIoSZ27 T 91551379173

SM2=SM2+ 0P

G20
c1¢g

13

TGOTTO 92

IF(SM2=3,1415927) 930,930,451 2

ST eI S SM=TTEY
GO TN <13
—E3 O] SMBH3TT A TS 627 ) e 255023 v o2 3
C25 EM3=SM3+PpP
G YOS 37)

G23 IFISM3-3.1415%27)

S40,940,392C

SR TEMIESM3I-T P

Gn To <23

e A S T 8 e e AR el
T41 SYMETSMRE SML%K2

T R T THOE MR
" TAG=TMS+ SMI=xP
XXAT=ED/SS

XXAZ2=T3/5¢C

N -

KHAFET S
XXM1=EM3/ 83

X XS =TURAZD o
XXM3=TND /ST

NED={ Xmy 2 Y7 PP
X=2=(X~X2) /PP

Z At i Sl P i S

260 WRTTI{UH 261} WX s ¥YE2 W Xi2 47E

D aSMLaSNMZSM3, XXALyXXAZ2e XXA 3 ¥ X A1y XXHA2,

XXM 3yl
201 CSUORMATIFS, DI X 13F7,2,1X,5

12.5)

“PRINT POINT DATA

T 2 BT EAG S K=Y 2}
2005 w=wil,
i

P EF— T AN A 6 3 LA 6N 2 65
S2z£8 /8%

2ES

Return-fornext -time-point.—

—FA=TH/ED
Te=T9/%a

GI=G17so——
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